Plant Molecular Biology

, Volume 96, Issue 3, pp 245–263 | Cite as

Interaction network of core ABA signaling components in maize

  • Ying-Ge Wang
  • Feng-Ling Fu
  • Hao-Qiang Yu
  • Tao Hu
  • Yuan-Yuan Zhang
  • Yi Tao
  • Jian-Kang Zhu
  • Yang Zhao
  • Wan-Chen Li
Article

Abstract

Key message

We defined a comprehensive core ABA signaling network in monocot maize, including the gene expression, subcellular localization and interaction network of ZmPYLs, ZmPP2Cs, ZmSnRK2s and the putative substrates.

Abstract

The phytohormone abscisic acid (ABA) plays an important role in plant developmental processes and abiotic stress responses. In Arabidopsis, ABA is sensed by the PYL ABA receptors, which leads to binding of the PP2C protein phosphatase and activation of the SnRK2 protein kinases. These components functioning diversely and redundantly in ABA signaling are little known in maize. Using Arabidopsis pyl112458 and snrk2.2/3/6 mutants, we identified several ABA-responsive ZmPYLs and ZmSnRK2s, and also ZmPP2Cs. We showed the gene expression, subcellular localization and interaction network of ZmPYLs, ZmPP2Cs, and ZmSnRK2s, and the isolation of putative ZmSnRK2 substrates by mass spectrometry in monocot maize. We found that the ABA dependency of PYL-PP2C interactions is contingent on the identity of the PP2Cs. Among 238 candidate substrates for ABA-activated protein kinases, 69 are putative ZmSnRK2 substrates. Besides homologs of previously reported putative AtSnRK2 substrates, 23 phosphoproteins have not been discovered in the dicot Arabidopsis. Thus, we have defined a comprehensive core ABA signaling network in monocot maize and shed new light on ABA signaling.

Keywords

Maize ABA signaling ZmPYLs ZmPP2Cs ZmSnRK2s Signaling network 

Notes

Acknowledgements

We thank the technical support from Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region and the operation of Confocal Fluorescence Microscope provided form Wenming Wang lab, pSPYNE and pSPYCE vector provided from Shigui Li lab and technical support of bimolecular fluorescence complementation directed by Xuewei Chen lab of Rice Research Institute.

Author contributions

Y-GW, F-LF, H-QY, TH, YYZ preformed the experiments, Y-GW and YT preformed the phosphoproteomics data analysis; YZ and J-KZ provided technical support; Y-GW and YZ wrote the manuscript; YZ and W-CL directed the research.

Supplementary material

11103_2017_692_MOESM1_ESM.tif (1.4 mb)
Supplementary material 1 (TIF 1460 KB)
11103_2017_692_MOESM2_ESM.tif (193 kb)
Supplementary material 2 (TIF 193 KB)
11103_2017_692_MOESM3_ESM.tif (865 kb)
Supplementary material 3 (TIF 865 KB)
11103_2017_692_MOESM4_ESM.tif (1.7 mb)
Supplementary material 4 (TIF 1694 KB)
11103_2017_692_MOESM5_ESM.tif (1.5 mb)
Supplementary material 5 (TIF 1547 KB)
11103_2017_692_MOESM6_ESM.docx (15 kb)
Supplementary material 6 (DOCX 15 KB)
11103_2017_692_MOESM7_ESM.xlsx (16 kb)
Supplementary material 7 (XLSX 16 KB)
11103_2017_692_MOESM8_ESM.xlsx (1021 kb)
Supplementary material 8 (XLSX 1020 KB)
11103_2017_692_MOESM9_ESM.xlsx (22 kb)
Supplementary material 9 (XLSX 21 KB)

References

  1. Aleman F et al (2016) An ABA-increased interaction of the PYL6 ABA receptor with MYC2 transcription factor: a putative link of ABA and JA. Signal Sci Rep 6:28941.  https://doi.org/10.1038/srep28941 CrossRefPubMedGoogle Scholar
  2. Antoni R, Gonzalez-Guzman M, Rodriguez L, Rodrigues A, Pizzio GA, Rodriguez PL (2012) Selective inhibition of clade A phosphatases type 2C by PYR/PYL/RCAR abscisic acid receptors. Plant Physiol 158:970–980.  https://doi.org/10.1104/pp.111.188623 CrossRefPubMedGoogle Scholar
  3. Antoni R et al (2013) PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiol 161:931–941.  https://doi.org/10.1104/pp.112.208678 CrossRefPubMedGoogle Scholar
  4. Bai G et al (2013) Interactions between soybean ABA receptors and type 2C protein phosphatases. Plant Mol Biol 83:651–664.  https://doi.org/10.1007/s11103-013-0114-4 CrossRefPubMedGoogle Scholar
  5. Belin C et al (2006) Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol 141:1316–1327.  https://doi.org/10.1104/pp.106.079327 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bhaskara GB, Nguyen TT, Verslues PE (2012) Unique drought resistance functions of the highly ABA-induced clade A protein phosphatase 2. Cs Plant physiology 160:379–395.  https://doi.org/10.1104/pp.112.202408 CrossRefGoogle Scholar
  7. Boudsocq M, Droillard M-J, Barbier-Brygoo H, Laurière C (2007) Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol Biol 63(4):491–503CrossRefPubMedGoogle Scholar
  8. Chai YM, Jia HF, Li CL, Dong QH, Shen YY (2011) FaPYR1 is involved in strawberry fruit ripening. J Exp Bot 62:5079–5089.  https://doi.org/10.1093/jxb/err207 CrossRefPubMedGoogle Scholar
  9. Chen Y, Hoehenwarter W, Weckwerth W (2010) Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and mass accuracy precursor alignment. Plant J 63:1–17.  https://doi.org/10.1111/j.1365-313X.2010.04218.x CrossRefPubMedGoogle Scholar
  10. Chen Z, Huang J, Muttucumaru N, Powers SJ, Halford NG (2013) Expression analysis of abscisic acid (ABA) and metabolic signalling factors in developing endosperm and embryo of barley. J Cereal Sci 58:255–262.  https://doi.org/10.1016/j.jcs.2013.06.009 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chou MF, Schwartz D (2011) Biological sequence motif discovery using motif-x. Curr Protoc Bioinform.  https://doi.org/10.1002/0471250953.bi1315s35 Google Scholar
  12. Cui F et al (2012) Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance. Plant Cell 24:233–244.  https://doi.org/10.1105/tpc.111.093062 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network Annu. Rev Plant Biol 61:651–679.  https://doi.org/10.1146/annurev-arplant-042809-112122 CrossRefGoogle Scholar
  14. Fan W, Zhao M, Li S, Bai X, Li J, Meng H, Mu Z (2016) Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots. BMC Plant Biol 16:99.  https://doi.org/10.1186/s12870-016-0764-x CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fuentes S, Pires N, Ostergaard L (2010) A clade in the QUASIMODO2 family evolved with vascular plants and supports a role for cell wall composition in adaptation to environmental changes. Plant Mol Biol 73:605–615.  https://doi.org/10.1007/s11103-010-9640-5 CrossRefPubMedGoogle Scholar
  16. Fujii H, Zhu JK (2009) Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc Natl Acad Sci USA 106:8380–8385.  https://doi.org/10.1073/pnas.0903144106 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fujii H, Zhu JK (2012) Osmotic stress signaling via protein kinases. Cell Mol Life Sci 69:3165–3173.  https://doi.org/10.1007/s00018-012-1087-1 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fujii H, Verslues PE, Zhu JK (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in. Arabidopsis Plant Cell 19:485–494.  https://doi.org/10.1105/tpc.106.048538 CrossRefPubMedGoogle Scholar
  19. Fujii H et al (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462:660–664.  https://doi.org/10.1038/nature08599 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fujii H, Verslues PE, Zhu JK (2011) Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc Natl Acad Sci USA 108:1717–1722.  https://doi.org/10.1073/pnas.1018367108 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fujita Y et al (2009) Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol 50:2123–2132.  https://doi.org/10.1093/pcp/pcp147 CrossRefPubMedGoogle Scholar
  22. Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA 103:1988–1993.  https://doi.org/10.1073/pnas.0505667103 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Geiger D et al (2009) Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci USA 106:21425–21430.  https://doi.org/10.1073/pnas.0912021106 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gonzalez-Guzman M et al (2012) Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic. Acid Plant Cell 24:2483–2496.  https://doi.org/10.1105/tpc.112.098574 CrossRefPubMedGoogle Scholar
  25. Guan Q, Wu J, Yue X, Zhang Y, Zhu J (2013) A nuclear calcium-sensing pathway is critical for gene regulation and salt stress tolerance in. Arabidopsis PLoS Genet 9:e1003755.  https://doi.org/10.1371/journal.pgen.1003755 CrossRefPubMedGoogle Scholar
  26. Han S et al (2017) Modulation of ABA signaling by altering VxGPhiL motif of PP2Cs in Oryza sativa. Mol Plant 10:1190–1205.  https://doi.org/10.1016/j.molp.2017.08.003 CrossRefPubMedGoogle Scholar
  27. Hao Q et al (2011) The molecular basis of ABA-independent inhibition of PP2Cs by a subclass of PYL proteins. Mol Cell 42:662–672.  https://doi.org/10.1016/j.molcel.2011.05.011 CrossRefPubMedGoogle Scholar
  28. Hauser F, Waadt R, Schroeder JI (2011) Evolution of abscisic acid synthesis and signaling mechanisms. Curr Biol 21:R346–R355.  https://doi.org/10.1016/j.cub.2011.03.015 CrossRefPubMedPubMedCentralGoogle Scholar
  29. He Y, Hao Q, Li W, Yan C, Yan N, Yin P (2014) Identification and characterization of ABA receptors in Oryza sativa. PLoS ONE 9:e95246.  https://doi.org/10.1371/journal.pone.0095246 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hu R, Fan C, Li H, Zhang Q, Fu YF (2009) Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol 10:93.  https://doi.org/10.1186/1471-2199-10-93 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hu X et al (2015) Quantitative iTRAQ-based proteomic analysis of phosphoproteins and ABA-regulated phosphoproteins in maize leaves under osmotic stress. Sci Rep 5:15626.  https://doi.org/10.1038/srep15626 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Huai J et al (2008a) Cloning and characterization of the SnRK2 gene family from Zea mays. Plant cell Rep 27:1861–1868.  https://doi.org/10.1007/s00299-008-0608-8 CrossRefPubMedGoogle Scholar
  33. Huai J, He MW,J, Zheng J, Dong Z, Lv H, Zhao J, Wang G (2008b) Cloning and characterization of the SnRK2 gene family from maize. Plant Cell Rep 27:1861–1868CrossRefPubMedGoogle Scholar
  34. Huang MD, Wu WL (2007) Overexpression of TMAC2, a novel negative regulator of abscisic acid and salinity responses, has pleiotropic effects in Arabidopsis thaliana. Plant Mol Biol 63:557–569.  https://doi.org/10.1007/s11103-006-9109-8 CrossRefPubMedGoogle Scholar
  35. Imes D, Mumm P, Böhm J, Al-Rasheid KAS, Marten I, Geiger D, Hedrich R (2013) Open stomata 1 (OST1) kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells. Plant J 74(3):372–382CrossRefPubMedGoogle Scholar
  36. Jammes F et al (2009) MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci USA 106:20520–20525.  https://doi.org/10.1073/pnas.0907205106 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kim H et al (2012) A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. J Exp Bot 63:1013–1024.  https://doi.org/10.1093/jxb/err338 CrossRefPubMedGoogle Scholar
  38. Kline KG, Barrett-Wilt GA, Sussman MR (2010) In planta changes in protein phosphorylation induced by the plant hormone abscisic acid. Proc Natl Acad Sci USA 107:15986–15991.  https://doi.org/10.1073/pnas.1007879107 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T (2004) Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell 16:1163–1177.  https://doi.org/10.1105/tpc.019943 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant 61:377–383.  https://doi.org/10.1111/j.1399-3054.1984.tb06343.x CrossRefGoogle Scholar
  41. Lee SC, Lan W, Buchanan BB, Luan S (2009) A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc Natl Acad Sci USA 106:21419–21424.  https://doi.org/10.1073/pnas.0910601106 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Leung J, Bouvier-Durand M, Morris P, Guerrier D, Chefdor F, Giraudat J (1994) Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Sci 264 (5164):1448–1452CrossRefGoogle Scholar
  43. Leung J, Merlot S, Giraudat J (1997) The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9:759–771.  https://doi.org/10.1105/tpc.9.5.759 CrossRefGoogle Scholar
  44. Li W et al (2013) Molecular basis for the selective and ABA-independent inhibition of PP2CA by PYL 13. Cell Res 23:1369–1379.  https://doi.org/10.1038/cr.2013.143 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T). Method Methods 25:402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  46. Lu C, Han MH, Guevara-Garcia A, Fedoroff NV (2002) Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proc Natl Acad Sci USA 99:15812–15817.  https://doi.org/10.1073/pnas.242607499 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068.  https://doi.org/10.1126/science.1172408 PubMedGoogle Scholar
  48. Meyer K, Leube M, Grill E (1994) A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Sci 264(5164):1452–1455CrossRefGoogle Scholar
  49. Meyer S et al (2010) AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant J 63:1054–1062.  https://doi.org/10.1111/j.1365-313X.2010.04302.x CrossRefPubMedGoogle Scholar
  50. Minkoff BB, Stecker KE, Sussman MR (2015) Rapid phosphoproteomic effects of ABA on wildtype and ABA receptor-deficient A. thaliana mutants. Mol Cell Proteom.  https://doi.org/10.1074/mcp.M114.043307 Google Scholar
  51. Mizoguchi M et al (2010) Two closely related subclass II SnRK2 protein kinases cooperatively regulate drought-inducible gene expression. Plant Cell Physiol 51:842–847.  https://doi.org/10.1093/pcp/pcq041 CrossRefPubMedGoogle Scholar
  52. Moreno-Alvero M et al (2017) Structure of ligand-bound intermediates of crop ABA receptors highlights PP2C as necessary ABA Co-receptor. Mol Plant 10:1250–1253.  https://doi.org/10.1016/j.molp.2017.07.004 CrossRefPubMedGoogle Scholar
  53. Mumm P, Imes D, Martinoia E, Al-Rasheid KA, Geiger D, Marten I, Hedrich R (2013) C-terminus-mediated voltage gating of Arabidopsis guard cell anion channel QUAC1. Mol Plant 6:1550–1563.  https://doi.org/10.1093/mp/sst008 CrossRefPubMedGoogle Scholar
  54. Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099CrossRefPubMedPubMedCentralGoogle Scholar
  55. Nakashima K et al (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50:1345–1363.  https://doi.org/10.1093/pcp/pcp083 CrossRefPubMedGoogle Scholar
  56. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185.  https://doi.org/10.1146/annurev.arplant.56.032604.144046 CrossRefPubMedGoogle Scholar
  57. Negi J et al (2008) CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452:483–486.  https://doi.org/10.1038/nature06720 CrossRefPubMedGoogle Scholar
  58. Nishimura N et al (2010) PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J 61:290–299.  https://doi.org/10.1111/j.1365-313X.2009.04054.x CrossRefPubMedGoogle Scholar
  59. Ohkuma K, Lyon JL, Addicott FT, Smith OE (1963) Abscisin II, an abscission-accelerating substance from young cotton fruit. Science 142:1592–1593.  https://doi.org/10.1126/science.142.3599.1592 CrossRefPubMedGoogle Scholar
  60. Park SY et al (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071.  https://doi.org/10.1126/science.1173041 PubMedPubMedCentralGoogle Scholar
  61. Rodriguez PL, Benning G, Grill E (1998) ABI2, a second protein phosphatase 2C involved in abscisic acid signal transduction in Arabidopsis. FEBS Lett 421(3):185–190CrossRefPubMedGoogle Scholar
  62. Saavedra X, Modrego A, Rodriguez D, Gonzalez-Garcia MP, Sanz L, Nicolas G, Lorenzo O (2010) The nuclear interactor PYL8/RCAR3 of Fagus sylvatica FsPP2C1 is a positive regulator of abscisic acid signaling in seeds and stress. Plant Physiol 152:133–150.  https://doi.org/10.1104/pp.109.146381 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Santiago J et al (2009) Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J 60:575–588.  https://doi.org/10.1111/j.1365-313X.2009.03981.x CrossRefPubMedGoogle Scholar
  64. Saruhashi M et al (2015) Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2. Proc Natl Acad Sci USA 112:E6388–E6396.  https://doi.org/10.1073/pnas.1511238112 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sasaki T et al (2010) Closing plant stomata requires a homolog of an aluminum-activated malate transporter. Plant Cell Physiol 51:354–365.  https://doi.org/10.1093/pcp/pcq016 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Schnable PS et al (2009) The B73 maize genome: complexity, diversity and dynamics. Science 326:1112–1115.  https://doi.org/10.1126/science.1178534 CrossRefPubMedGoogle Scholar
  67. Schwartz D, Gygi SP (2005) An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets. Nat Biotechnol 23:1391–1398.  https://doi.org/10.1038/nbt1146 CrossRefPubMedGoogle Scholar
  68. Soon FF et al (2012) Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science 335:85–88.  https://doi.org/10.1126/science.1215106 CrossRefPubMedGoogle Scholar
  69. Sugiyama N, Masuda T, Shinoda K, Nakamura A, Tomita M, Ishihama Y (2007) Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteom 6:1103–1109.  https://doi.org/10.1074/mcp.T600060-MCP200 CrossRefGoogle Scholar
  70. Tian X et al (2015) Characterization and functional analysis of pyrabactin resistance-like abscisic acid receptor family in rice. Rice 8:28.  https://doi.org/10.1186/s12284-015-0061-6 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Tischer SV, Wunschel C, Papacek M, Kleigrewe K, Hofmann T, Christmann A, Grill E (2017) Combinatorial interaction network of abscisic acid receptors and coreceptors from Arabidopsis thaliana. Proc Natl Acad Sci USA.  https://doi.org/10.1073/pnas.1706593114 PubMedPubMedCentralGoogle Scholar
  72. Umezawa T et al (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA 106:17588–17593.  https://doi.org/10.1073/pnas.0907095106 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Umezawa T, Sugiyama N, Takahashi F, Anderson JC, Ishihama Y, Peck SC, Shinozaki K (2013) Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci Signal 6:rs8.  https://doi.org/10.1126/scisignal.2003509 CrossRefPubMedGoogle Scholar
  74. Vahisalu T et al (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452:487–491.  https://doi.org/10.1038/nature06608 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Vilela B, Moreno A, Capellades M, Pagès M, Lumbreras V (2012) ZmSnRK2.8 responds to ABA through the SnRK2-PP2C complex Maydica 57:11–18Google Scholar
  76. Vilela B, Moreno-Cortes A, Rabissi A, Leung J, Pages M, Lumbreras V (2013) The maize OST1 kinase homolog phosphorylates and regulates the maize SNAC1-type transcription factor. PLoS ONE 8:e58105.  https://doi.org/10.1371/journal.pone.0058105 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Walter M et al (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438.  https://doi.org/10.1111/j.1365-313X.2004.02219.x CrossRefPubMedGoogle Scholar
  78. Wang P et al (2013) Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc Natl Acad Sci USA 110:11205–11210.  https://doi.org/10.1073/pnas.1308974110 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Wang Y-G, Yu H-Q, Zhang Y-Y, Lai C-X, She Y-H, Li W-C, Fu F-L (2014) Interaction between abscisic acid receptor PYL3 and protein phosphatase type 2C in response to ABA signaling in maize. Gene 549:179–185 doi.  https://doi.org/10.1016/j.gene.2014.08.001 CrossRefPubMedGoogle Scholar
  80. Wei K, Pan S (2014) Maize protein phosphatase gene family: identification and molecular characterization. BMC Genom 15:773.  https://doi.org/10.1186/1471-2164-15-773 CrossRefGoogle Scholar
  81. Wege S, De Angeli A, Droillard M-J, Kroniewicz L, Merlot S, Cornu D, Gambale F, Martinoia E, Barbier-Brygoo H, Thomine S, Leonhardt N, Filleur S (2014) Phosphorylation of the vacuolar anion exchanger AtCLCa is required for the stomatal response to abscisic acid. Sci Signal 7(333):ra65CrossRefPubMedGoogle Scholar
  82. Xie T et al (2012) Molecular mechanism for inhibition of a critical component in the Arabidopsis thaliana abscisic acid signal transduction pathways, SnRK2.6, by protein phosphatase ABI1. J Biol Chem 287:794–802.  https://doi.org/10.1074/jbc.M111.313106 CrossRefPubMedGoogle Scholar
  83. Xing L, Zhao Y, Gao J, Xiang C, Zhu JK (2016) The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth. Sci Rep 6:27177.  https://doi.org/10.1038/srep27177 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Yin P et al (2009) Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat Struct Mol Biol 16:1230–1236.  https://doi.org/10.1038/nsmb.1730 CrossRefPubMedGoogle Scholar
  85. Ying S et al (2011) Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis. Plant cell Rep 30:1683–1699.  https://doi.org/10.1007/s00299-011-1077-z CrossRefPubMedGoogle Scholar
  86. Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2006) The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem 281:5310–5318.  https://doi.org/10.1074/jbc.M509820200 CrossRefPubMedGoogle Scholar
  87. Yoshida T et al (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685.  https://doi.org/10.1111/j.1365-313X.2009.04092.x CrossRefPubMedGoogle Scholar
  88. Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2014) Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant Cell Environ.  https://doi.org/10.1111/pce.12351 PubMedPubMedCentralGoogle Scholar
  89. Zhan X et al (2015) An Arabidopsis PWI and RRM motif-containing protein is critical for pre-mRNA splicing and ABA responses. Nat Commun 6:8139.  https://doi.org/10.1038/ncomms9139 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Zhang X et al (2015) Hijacking of the jasmonate pathway by the mycotoxin fumonisin B1 (FB1) to initiate programmed cell death in Arabidopsis is modulated by RGLG3 and RGLG4. J Exp Bot 66:2709–2721.  https://doi.org/10.1093/jxb/erv068 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Zhang H, Li W, Mao X, Jing R, Jia H (2016) Differential activation of the wheat SnRK2 family by abiotic stresses. Front Plant Sci 7:420.  https://doi.org/10.3389/fpls.2016.00420 PubMedPubMedCentralGoogle Scholar
  92. Zhao Y et al (2013) The unique mode of action of a divergent member of the ABA-receptor protein family in ABA and stress signaling. Cell Res 23:1380–1395.  https://doi.org/10.1038/cr.2013.149 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Zhao Y et al (2014) The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive. genes Sci Signal 7:ra53.  https://doi.org/10.1126/scisignal.2005051 CrossRefPubMedGoogle Scholar
  94. Zhao Y et al (2016) ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc Natl Acad Sci USA 113:1949–1954.  https://doi.org/10.1073/pnas.1522840113 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Zhong R, Burk DH, Morrison WH 3rd, Ye ZH (2004) FRAGILE FIBER3, an Arabidopsis gene encoding a type II inositol polyphosphate 5-phosphatase, is required for secondary wall synthesis and actin organization in fiber cells. Plant Cell 16:3242–3259.  https://doi.org/10.1105/tpc.104.027466 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Zhou S et al. (2009) A single molecule scaffold for the maize genome. PLoS Genet 5:e1000711  https://doi.org/10.1371/journal.pgen.1000711 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273.  https://doi.org/10.1146/annurev.arplant.53.091401.143329 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324.  https://doi.org/10.1016/j.cell.2016.08.029 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Maize Research InstituteSichuan Agricultural UniversityChengduChina
  2. 2.Shanghai Center for Plant Stress Biology, and CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina

Personalised recommendations