Plant Molecular Biology

, Volume 95, Issue 4–5, pp 519–531 | Cite as

The novel ethylene-responsive factor CsERF025 affects the development of fruit bending in cucumber

  • Chunhua Wang
  • Ming Xin
  • Xiuyan Zhou
  • Chunhong Liu
  • Shengnan Li
  • Dong Liu
  • Yuan Xu
  • Zhiwei Qin
Article

Abstract

Key message

Overexpression of CsERF025 induces fruit bending by promoting the production of ethylene.

Abstract

Cucumber fruit bending critically affects cucumber quality, but the mechanism that causes fruit bending remains unclear. To better understand this mechanism, we performed transcriptome analyses on tissues from the convex (C1) and concave (C2) sides of bending and straight (S) fruit at 2 days post anthesis (DPA). We identified a total of 281 differentially expressed genes (DEGs) from both the convex and concave sides of bent fruit that showed significantly different expression profiles relative to straight fruits. Of these 281 DEGs, 196 were up-regulated (C1/S_C2/S) and 85 were down-regulated (C1/S_C2/S). Among the 196 up-regulated DEGs, the transcriptional levels of genes related to ethylene biosynthesis and signaling pathways were significantly higher in bending fruit compared with straight fruit. CsERF025 showed the largest difference in expression between bending and straight fruit. CsERF025 is an AP2/ERF gene encoding a protein that localizes to the nucleus. Overexpression of this gene increased the bending rate of cucumber fruits and increased the angle of bending. CsERF025 increased both the expression of ethylene biosynthesis-related genes and the production of ethylene. The application of exogenous 1-aminocyclopropane-l-carboxylic acid (ACC) to straight fruits from control plants promoted fruit bending. Thus, CsERF025 enhances the production of ethylene and thereby promotes fruit bending in cucumber.

Keywords

Cucumber Bending fruit Transcriptome CsERF025 Ethylene 

Notes

Acknowledgements

This study was funded by the National Natural Science Foundation of China (31401863) and the Young Talents Project of Northeast Agricultural University (14QC12). There are no financial competing interests. We acknowledge Associate Professor Yongguang Li (Key Laboratory of Northeastern Soybean Biology and Genetic Breeding of the Ministry of Agriculture, China) for providing the pCXSN-1250 vector. We thank Professor Huazhong Ren (College of Agronomy and Biotechnology, China Agricultural University, Beijing), who provided the method for the genetic transformation of cucumber.

Author contributions

CW and ZQ designed and conceived the research, and CW, MX and XZ performed the experiments. CL, SL, DL and YX analyzed the sequencing data. CW wrote the entire manuscript, and ZQ edited the manuscript.

Supplementary material

11103_2017_671_MOESM1_ESM.docx (4.3 mb)
Supplementary material 1 (DOCX 4374 KB)

References

  1. Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin GB et al (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17:2954–2965. doi: 10.1105/tpc.105.036053 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Chen S, Songkumarn P, Liu J, Wang GL (2009) A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiol 150:1111–1121. doi: 10.1104/pp.109.137125 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chervin C, El-Kereamy A, Roustan JP, Latché A, Lamon J, Bouzayen M (2004) Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci 167:1301–1305. doi: 10.1016/j.plantsci.2004.06.026 CrossRefGoogle Scholar
  4. Colle M, Weng Y, Kang Y, Ophir R, Sherman A, Grumet R (2017). Variation in cucumber (Cucumis sativus L.) fruit size and shape results from multiple components acting pre-anthesis and post-pollination. Planta 1–18. doi: 10.1007/s00425-017-2721-9
  5. Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–WW70. doi: 10.1093/nar/gkq310 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Fulgosi H, Soll J, de Faria Maraschin S, Korthout HA, Wang M, Testerink C (2002) 14-3-3 Proteins and plant development. Plant Mol Biol 50:1019–1029. doi: 10.1023/A:1021295604109 CrossRefPubMedGoogle Scholar
  7. Ge C (2008) Evaluation of main germplasm resources about different degree of bending in cucumber. Dissertation, Northeast Agricultural UniversityGoogle Scholar
  8. González-Ballester D, Casero D, Cokus S, Pellegrini M, Merchant SS, Grossman AR (2010) RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival. Plant Cell 22:2058–2084. doi: 10.1105/tpc.109.071167 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Griffiths A, Barry C, Alpuche-Solis AG, Grierson D (1999) Ethylene and developmental signals regulate expression of lipoxygenase genes during tomato fruit ripening. J Exp Bot 50:793–798. doi: 10.1093/jxb/50.335.793 CrossRefGoogle Scholar
  10. Gu C, Guo ZH, Hao PP, Wang GM, Jin ZM, Zhang SL (2017) Multiple regulatory roles of AP2/ERF transcription factor in angiosperm. Bot Stud 58:6. doi: 10.1186/s40529-016-0159-1 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Han Y, Kuang J, Chen J, Liu X, Xiao Y, Fu C et al (2016) Banana transcription factor MaERF11 recruits histone deacetylase MaHDA1 and represses the expression of MaACO1 and expansins during fruit ripening. Plant Physiol 171:1070–1084. doi: 10.1104/pp.16.00301 PubMedPubMedCentralGoogle Scholar
  12. Hao D, Yamasaki K, Sarai A, Ohme-Takagi M (2002) Determinants in the sequence specific binding of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs. BioChemistry 41:4202–4208. doi: 10.1021/bi015979v CrossRefPubMedGoogle Scholar
  13. Hu JL (2012) Botany. Beijing, ChinaGoogle Scholar
  14. Huang S, Li R, Zhang Z, Li L, Gu X, Fan W et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281. doi: 10.1038/ng.475 CrossRefPubMedGoogle Scholar
  15. Kanahama K, Saito T (1984) Effect of planting density and shading on the fruit curvature in cucumber. J Jpn Soc Hort Sci 53:331–337. doi: 10.2503/jjshs.53.331 CrossRefGoogle Scholar
  16. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. doi: 10.1093/molbev/msw054 CrossRefPubMedGoogle Scholar
  17. Lee JM, Joung JG, McQuinn R, Chung MY, Fei Z, Tieman D et al (2012) Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. Plant J 70:191–204. doi: 10.1111/j.1365-313X.2011.04863.x CrossRefPubMedGoogle Scholar
  18. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y et al (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327. doi: 10.1093/nar/30.1.325 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Li Y, Zhu B, Xu W, Zhu H, Chen A, Xie Y et al (2007) LeERF1 positively modulated ethylene triple response on etiolated seedling, plant development and fruit ripening and softening in tomato. Plant Cell Rep 26:1999–2008. doi: 10.1007/s00299-007-0394-8 CrossRefPubMedGoogle Scholar
  20. Liu M, Pirrello J, Kesari R, Mila I, Roustan JP, Li Z et al (2013) A dominant repressor version of the tomato Sl-ERF.B3 gene confers ethylene hypersensitivity via feedback regulation of ethylene signaling and response components. Plant J 76:406–419. doi: 10.1111/tpj.12305 CrossRefPubMedGoogle Scholar
  21. Liu M, Diretto G, Pirrello J, Roustan JP, Li Z, Giuliano G et al (2014) The chimeric repressor version of an ethylene Response Factor (ERF) family member, Sl-ERF.B3, shows contrasting effects on tomato fruit ripening. New Phytol 203:206–218. doi: 10.1111/nph.12771 CrossRefPubMedGoogle Scholar
  22. Miao M, Yang X, Han X, Wang K (2011) Sugar signalling is involved in the sex expression response of monoecious cucumber to low temperature. J Exp Bot 62:797–804. doi: 10.1093/jxb/erq315 CrossRefPubMedGoogle Scholar
  23. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-SEq. Nat Methods 5:621–628. doi: 10.1038/nmeth.1226 CrossRefPubMedGoogle Scholar
  24. Nakatsuka A, Murachi S, Okunishi H, Shiomi S, Nakano R, Kubo Y et al (1998) Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol 118:1295–1305. doi: 10.1104/pp.118.4.1295 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182. doi: 10.1105/tpc.7.2.173 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Patel RK, Jain M (2012) NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE 7:e30619. doi: 10.1371/journal.pone.0030619 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. doi: 10.1093/bioinformatics/btp616 CrossRefPubMedGoogle Scholar
  28. Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009. doi: 10.1006/bbrc.2001.6299 CrossRefPubMedGoogle Scholar
  29. Sato T, Takiguchi T, Matsuura K, Narimatsu J, Mizuno N (2003) Effects of high temperature caused by non-ventilation of greenhouse on the growth and prevention of disease and insect damage in summer-grown cucumber. Engei Gakkai Zasshi 72:56–63. doi: 10.2503/jjshs.72.56 CrossRefGoogle Scholar
  30. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108. doi: 10.1038/nprot.2008.73 CrossRefPubMedGoogle Scholar
  31. Silk WK, Erickson RO (1979) Kinematics of plant growth. J Theor Biol 76:481–501. doi: 10.1016/0022-5193(79)90014-6 CrossRefPubMedGoogle Scholar
  32. Tan J, Tao Q, Niu H, Zhang Z, Li D, Gong Z et al (2015) A novel allele of monoecious (m) locus is responsible for elongated fruit shape and perfect flowers in cucumber (Cucumis sativus L.). Theor Appl Genet 128:2483–2493. doi: 10.1007/s00122-015-2603-0 CrossRefPubMedGoogle Scholar
  33. Trebitsh T, Staub JE, O’Neill SD (1997) Identification of a 1-aminocyclopropane-1-carboxylic acid synthase gene linked to the female (F) locus that enhances female sex expression in cucumber. Plant Physiol 113:987–995. doi: 10.1104/pp.113.3.987 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Vandenbussche F, Petrášek J, Zadnikova P et al (2010) The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development 137:597–606. doi: 10.1242/dev.040790 CrossRefPubMedGoogle Scholar
  35. Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA et al (2011) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89. doi: 10.1038/nbt.2022 CrossRefPubMedGoogle Scholar
  36. Wan H, Zhao Z, Qia C, Sui Y, Malik AA, Chen J (2010) Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal Biochem 399:257–261. doi: 10.1016/j.ab.2009.12.008 CrossRefPubMedGoogle Scholar
  37. Wang A, Tan D, Takahashi A, Li TZ, Harada T (2007) MdERFs, two ethylene-response factors involved in apple fruit ripening. J Exp Bot 58:3743–3748. doi: 10.1093/jxb/erm224 CrossRefPubMedGoogle Scholar
  38. Wang DH, Li F, Duan QH, Han T, Xu ZH, Bai SN (2010) Ethylene perception is involved in female cucumber flower development. Plant J 61:862–872. doi: 10.1111/j.1365-313X.2009.04114.x CrossRefPubMedGoogle Scholar
  39. Wang LL, Zhang P, Qin ZW, Zhou XY (2014) Proteomic analysis of fruit bending in cucumber (Cucumis sativus L.). J Integr Agricultur 13:963–974. doi: 10.1016/S2095-3119(13)60406-2 CrossRefGoogle Scholar
  40. Xiao YY, Chen JY, Kuang JF, Shan W, Xie H, Jiang YM et al (2013) Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes. J Exp Bot 64:2499–2510. doi: 10.1093/jxb/ert108 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Xu Y, Qin Z, Zhou X (2013) Cloning and expression analysis of fruit bending related gene Cs14-3-3 in cucumber. Acta Hort Sin 5:11. doi: 10.16420/j.issn.0513-353x.2013.05.012 Google Scholar
  42. Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572. doi: 10.1038/nprot.2007.199 CrossRefPubMedGoogle Scholar
  43. Zhang P (2009) Mapping Quantitative Traits Loci and Proteomics Studies on Bending of Cucumber Fruit. Dissertation, Northeast Agricultural UniversityGoogle Scholar
  44. Zhang Y, Zhang X, Liu B, Wang W, Liu X, Chen C et al (2014) A GAMYB homologue CsGAMYB1 regulates sex expression of cucumber via an ethylene-independent pathway. J Exp Bot 65:3201–3213. doi: 10.1093/jxb/eru176 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.College of Horticulture and Landscape Architecture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region)Northeast Agricultural UniversityHarbinChina

Personalised recommendations