Plant Molecular Biology

, Volume 95, Issue 4–5, pp 389–398 | Cite as

Papillae formation on trichome cell walls requires the function of the mediator complex subunit Med25

  • Christy Fornero
  • Bangxia Suo
  • Mais Zahde
  • Katelyn Juveland
  • Viktor Kirik


Key message

Glassy Hair 1 (GLH1) gene that promotes papillae formation on trichome cell walls was identified as a subunit of the transcriptional mediator complex MED25. The MED25 gene is shown to be expressed in trichomes. The expression of the trichome development marker genes GLABRA2 (GL2) and Ethylene Receptor2 (ETR2) is not affected in the glh1 mutant. Presented data suggest that Arabidopsis MED25 mediator component is likely involved in the transcription of genes promoting papillae deposition in trichomes.


The plant cell wall plays an important role in communication, defense, organization and support. The importance of each of these functions varies by cell type. Specialized cells, such as Arabidopsis trichomes, exhibit distinct cell wall characteristics including papillae. To better understand the molecular processes important for papillae deposition on the cell wall surface, we identified the GLASSY HAIR 1 (GLH1) gene, which is necessary for papillae formation. We found that a splice-site mutation in the component of the transcriptional mediator complex MED25 gene is responsible for the near papillae-less phenotype of the glh1 mutant. The MED25 gene is expressed in trichomes. Reporters for trichome developmental marker genes GLABRA2 (GL2) and Ethylene Receptor2 (ETR2) were not affected in the glh1 mutant. Collectively, the presented results show that MED25 is necessary for papillae formation on the cell wall surface of leaf trichomes and suggest that the Arabidopsis MED25 mediator component is likely involved in the transcription of a subset of genes that promote papillae deposition in trichomes.


Cell wall Trichomes Papillae Mediator 



The authors would like to thank Stephanie Seifert for her help with the genetic mapping of the GLH1 gene. Thanks are due to the Arabidopsis Biological Resource Center (, from which we obtained T-DNA lines. We would like to acknowledge Dr. Pablo Cerdan for sending us the pPZP212 vector containing the MED25 regulatory and coding regions (Iñigo et al. 2012), and Dr. Sharon Regan at Queen’s University, Ontario Canada, for sending us ETR2pro::GUS lines (Plett et al. 2009). We also extend our appreciation to Dr. Martha Cook for her help with the SEM imaging and to Dr. Jun-Hyun Kim and Tony Ludwig for their help with the ICP analysis. This research was supported by Illinois State University (CF, BS, and VK) and by a Weigel Grant from the Beta Lambda chapter of Phi-Sigma Biological Society to CF.

Author contributions

CM, BS, MZ, KJ and VK designed and performed experiments. CM and VK have written the manuscript.


  1. Autran D, Jonak C, Belcram K, Beemster GT, Kronenberger J, Grandjean O, Inzé D, Traas J (2002) Cell numbers and leaf development in Arabidopsis: a functional analysis of the STRUWWELPETER gene. EMBO J 21:6036–6049CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bäckström S, Elfving N, Nilsson R, Wingsle G, Björklund S (2007) Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the MED25 subunit. Mol Cell 26:717–729CrossRefPubMedGoogle Scholar
  3. Barneche F, Steinmetz F, Echeverría M (2000) Fibrillarin genes encode both a conserved nucleolar protein and a novel small nucleolar RNA involved in ribosomal RNA methylation in Arabidopsis thaliana. J Biol Chem 275:27212–27220PubMedGoogle Scholar
  4. Bashline L, Li S, Gu Y (2014) The trafficking of the cellulose synthase complex in higher plants. Ann Bot 114:1059–1067CrossRefPubMedPubMedCentralGoogle Scholar
  5. Betancur L, Singh B, Rapp RA, Wendel JF, Marks MD, Roberts AW, Haigler CH (2010) Phylogenetically distinct cellulose synthase genes support secondary cell wall thickening in Arabidopsis shoot trichomes and cotton fiber. J Integr Plant Biol 52:205–220CrossRefPubMedGoogle Scholar
  6. Bischoff V, Nita S, Neumetzler L, Schindelasch D, Urbain A, Eshed R, Persson S, Delmer D, Scheible WR (2010) TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis. Plant Physiol 153:590–602CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bonawitz ND, Kim JI, Tobimatsu Y, Ciesielski PN, Anderson NA, Ximenes E, Maeda J, Ralph J, Donohoe BS, Ladisch M, Chapple C (2014) Disruption of mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature 509:376–380CrossRefPubMedGoogle Scholar
  8. Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900CrossRefPubMedGoogle Scholar
  9. Cerdán PD, Chory J (2003) Regulation of flowering time by light quality. Nature 423:881–885CrossRefPubMedGoogle Scholar
  10. Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J, Li C (2012) The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell 24:2898–2916CrossRefPubMedPubMedCentralGoogle Scholar
  11. Clay NK, Nelson T (2005) The recessive epigenetic swellmap mutation affects the expression of two step II splicing factors required for the transcription of the cell proliferation gene STRUWWELPETER and for the timing of cell cycle arrest in the Arabidopsis leaf. Plant Cell 17:1994–2008CrossRefPubMedPubMedCentralGoogle Scholar
  12. Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dhawan R, Luo H, Foerster AM, Abuqamar S, Du HN, Briggs SD, Scheid OM, Mengiste T (2009) HISTONE MONOUBIQUITINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis. Plant Cell 21:1000–1019CrossRefPubMedPubMedCentralGoogle Scholar
  14. Domozych DS, Sørensen I, Popper ZA, Ochs J, Andreas A, Fangel JU, Pielach A, Sachs C, Brechka H, Ruisi-Besares P, Willats WG, Rose J (2014) Pectin metabolism and assembly in the cell wall of the charophyte green alga Penium margaritaceum. Plant Physiol 165:105–118CrossRefPubMedPubMedCentralGoogle Scholar
  15. Elfving N, Davoine C, Benlloch R, Blomberg J, Brännström K, Müller D, Nilsson A, Ulfstedt M, Ronne H, Wingsle G, Nilsson O, Björklund S (2011) The Arabidopsis thaliana MED25 mediator subunit integrates environmental cues to control plant development. Proc Natl Acad Sci USA 108:8245–8250CrossRefPubMedPubMedCentralGoogle Scholar
  16. Esch JJ, Chen M, Sanders M, Hillestad M, Ndkium S, Idelkope B, Neizer J, Marks MD. (2003) A contradictory GLABRA3 allele helps define gene interactions controlling trichome development in Arabidopsis. Development 130: 5885–5894CrossRefPubMedGoogle Scholar
  17. Gillmor CS, Park MY, Smith MR, Pepitone R, Kerstetter RA, Poethig RS (2010) The MED12-MED13 module of mediator regulates the timing of embryo patterning in Arabidopsis. Development 137:113–122CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gonzalez D, Bowen AJ, Carroll TS, Conlan RS (2007) The transcription corepressor LEUNIG interacts with the histone deacetylase HDA19 and mediator components MED14 (SWP) and CDK8 (HEN3) to repress transcription. Mol Cell Biol 27:5306–5315CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hatfield RD, Ralph J, Grabber JH (1999) Cell wall cross-linking by ferulates and diferulates in grasses. J Sci Food Agric 79:403–407CrossRefGoogle Scholar
  20. Huang L, Jones AM, Searle I, Patel K, Vogler H, Hubner NC, Baulcombe DC (2009) An atypical RNA polymerase involved in RNA silencing shares small subunits with RNA polymerase II. Nat Struct Mol Biol 16:91–93CrossRefPubMedGoogle Scholar
  21. Hülskamp M, Misŕa S, Jürgens G (1994) Genetic dissection of trichome cell development in Arabidopsis. Cell 76:555–566CrossRefPubMedGoogle Scholar
  22. Iñigo S, Alvarez MJ, Strasser B, Califano A, Cerdán PD (2012) PFT1, the MED25 subunit of the plant mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis. Plant J 69:601–612CrossRefPubMedGoogle Scholar
  23. Ito J, Sono T, Tasaka M, Furutani M (2011) MACCHI-BOU 2 is required for early embryo patterning and cotyledon organogenesis in Arabidopsis. Plant Cell Physiol 52:539–552CrossRefPubMedGoogle Scholar
  24. Jakoby MJ, Falkenhan D, Mader MT, Brininstool G, Wischnitzki E, Platz N, Hudson A, Hülskamp M, Larkin J, Schnittger A (2008) Transcriptional profiling of mature Arabidopsis trichomes reveals that NOECK encodes the MIXTA-like transcriptional regulator MYB106. Plant Physiol 148:1583–1602CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kang CH, Feng Y, Vikram M, Jeong IS, Lee JR, Bahk JD, Yun DJ, Lee SY, Koiwa H (2009) Arabidopsis thaliana PRP40s are RNA polymerase II Cterminal domain-associating proteins. Arch Biochem Biophys 484:30–38CrossRefPubMedGoogle Scholar
  26. Karabourniotis G, Kotsabassidis D, Manetas Y (1995) Trichome density and its protective potential against ultraviolet-B radiation-damage during leaf development. Can J Bot 75:376–383CrossRefGoogle Scholar
  27. Kidd BN, Edgar CI, Kumar KK, Aitken EA, Schenk PM, Manners JM, Kazan K (2009) The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. Plant Cell 21:2237–2252CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kim YJ, Zheng B, Yu Y, Won SY, Mo B, Chen X (2011) The role of mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J 30:814–822CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kobbe D, Blanck S, Demand K, Focke M, Puchta H (2008) AtRECQ2, a RecQ helicase homologue from Arabidopsis thaliana, is able to disrupt various recombinogenic DNA structures in vitro. Plant J 55:397–405CrossRefPubMedGoogle Scholar
  30. Kulich I, Vojtíková Z, Glanc M, Ortmannová J, Rasmann S, Žárský V (2015) Cell wall maturation of Arabidopsis trichomes is dependent on exocyst subunit EXO70H4 and involves callose deposition. Plant Phys 168:120–131CrossRefGoogle Scholar
  31. Lai Z, Schluttenhofer CM, Bhide K, Shreve J, Thimmapuram J, Lee SY, Yun DJ, Mengiste T (2014) MED18 interaction with distinct transcription factors regulates multiple plant functions. Nat Commun 5:3064. doi: 10.1038/ncomms4064 CrossRefPubMedGoogle Scholar
  32. Lei L, Li S, Gu Y (2012) Cellulose synthase complexes: composition and regulation. Front Plant Sci 3:75. doi:  10.3389/fpls.2012.00075 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Li W, Yoshida A, Takahashi M, Maekawa M, Kojima M, Sakakibara H, Kyozuka J (2015) SAD1, an RNA polymerase I subunit A34.5 of rice, interacts with mediator and controls various aspects of plant development. Plant J 81:282–291CrossRefPubMedGoogle Scholar
  34. Lukowitz W, Gillmor CS, Scheible WR (2000) Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Phys 123:795–805CrossRefGoogle Scholar
  35. Malik S, Roeder RG (2010) The Metazoan mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 11:761–772CrossRefPubMedPubMedCentralGoogle Scholar
  36. Marks MD, Gilding E, Wenger JP (2007) Genetic interaction between glabra3-shapeshifter and siamese in Arabidopsis thaliana converts trichome precursors into cells with meristematic activity. Plant J 52:352–361CrossRefPubMedGoogle Scholar
  37. Marks MD, Betancur L, Gilding E, Chen F, Bauer S, Wenger JP, Dixon RA, Haigler CH (2008) A new method for isolating large quantities of Arabidopsis trichomes for transcriptome, cell wall and other types of analyses. Plant J 56:483–492CrossRefPubMedGoogle Scholar
  38. Marks MD, Wenger JP, Gilding E, Jilk R, Dixon RA (2009) Transcriptome analysis of Arabidopsis wild-type and gl3–sst sim trichomes identifies four additional genes required for trichome development. Mol Plant 2:803–822CrossRefPubMedPubMedCentralGoogle Scholar
  39. Maruyama D, Endo T, Nishikawa S (2010) BiP-mediated polar nuclei fusion is essential for the regulation of endosperm nuclei proliferation in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:1684–1689CrossRefPubMedPubMedCentralGoogle Scholar
  40. Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M (1998) Arabidopsis thaliana: a model plant for genome analysis. Science 282:662–682CrossRefPubMedGoogle Scholar
  41. Plett JM, Mathur J, Regan S (2009) Ethylene receptor ETR2 controls trichome branching by regulating microtubule assembly in Arabidopsis thaliana. J Exp Bot 60:3923–3933CrossRefPubMedPubMedCentralGoogle Scholar
  42. Polivka T, Hofmann E (2014) In: Martin F. Hohmann-Marriott (ed.) The structural basis of biological energy generation. Dordrecht, SpringerGoogle Scholar
  43. Potikha T, Delmer DP (1995) A mutant of Arabidopsis thaliana displaying altered patterns of cellulose deposition. Plant J 7:453–460CrossRefGoogle Scholar
  44. Rerie WG, Feldmann KA, Marks MD (1994) The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis. Genes Dev 8:1388–1399CrossRefPubMedGoogle Scholar
  45. Samanta S, Thakur JK (2015) Importance of mediator complex in the regulation and integration of diverse signaling pathways in plants. Front Plant Sci 6:757. doi:  10.3389/fpls.2015.00757 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sundaravelpandian K, Chandrika NN, Schmidt W (2013) PFT1, a transcriptional mediator complex subunit, controls root hair differentiation through reactive oxygen species (ROS) distribution in Arabidopsis. New Phytol 197:151–161CrossRefPubMedGoogle Scholar
  47. Suo B, Seifert S, Kirik V (2013) Arabidopsis GLASSY HAIR genes promote trichome papillae development. J Exp Bot 64:4981–4991CrossRefPubMedPubMedCentralGoogle Scholar
  48. Szymanski DB, Jilk RA, Pollock SM, Marks MD (1998) Control of GL2 expression in Arabidopsis leaves and trichomes. Development 125:1161–1171PubMedGoogle Scholar
  49. Vanzin GF, Madson M, Carpita NC, Raikhel NV, Keegstra K, Reiter WD (2002) The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1. Proc Natl Acad Sci USA 99:3340–3345CrossRefPubMedPubMedCentralGoogle Scholar
  50. Xu R, Li Y (2011) Control of final organ size by mediator complex subunit 25 in Arabidopsis thaliana. Development 138:4545–4554CrossRefPubMedGoogle Scholar
  51. Xu R, Li Y (2012) The mediator complex subunit 8 regulates organ size in Arabidopsis thaliana. Plant Signal Behav 7:182–183CrossRefPubMedPubMedCentralGoogle Scholar
  52. Yan D, Zhang Y, Niu L, Yuan Y, Cao X (2007) Identification and characterization of two closely related histone H4 arginine 3 methyltransferases in Arabidopsis thaliana. Biochem J 408:113–121CrossRefPubMedPubMedCentralGoogle Scholar
  53. Yan A, Pan J, An L, Gan Y, Feng H (2012) The responses of trichome mutants to enhanced ultraviolet-B radiation in Arabidopsis thaliana. J Photochem Photobiol B 113:29–35CrossRefPubMedGoogle Scholar
  54. Yang Y, Ou B, Zhang J, Si W, Gu H, Qin G, Qu LJ (2014) The Arabidopsis mediator subunit MED16 regulates iron homeostasis by associating with EIN3/EIL1 through subunitMED25. Plant J 77:838–851CrossRefPubMedGoogle Scholar
  55. Zhang Y, Wu H, Wang N, Fan H, Chen C, Cui Y, Liu H, Ling HQ (2014) Mediator subunit 16 functions in the regulation of iron uptake gene expression in Arabidopsis. New Phytol 203:770–783CrossRefPubMedGoogle Scholar
  56. Zheng Z, Guan H, Leal F, Grey PH, Oppenheimer DG (2013) Mediator subunit 18 controls flowering time and floral organ identity in Arabidopsis. PLoS ONE 8:e53924. doi:  10.1371/journal.pone.0053924 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.School of Biological SciencesIllinois State UniversityNormalUSA

Personalised recommendations