Plant Molecular Biology

, Volume 95, Issue 4–5, pp 345–357 | Cite as

OsPPR6, a pentatricopeptide repeat protein involved in editing and splicing chloroplast RNA, is required for chloroplast biogenesis in rice

  • Jianpeng Tang
  • Wenwei Zhang
  • Kai Wen
  • Gaoming Chen
  • Juan Sun
  • Yunlu Tian
  • Weijie Tang
  • Jun Yu
  • Hongzhou An
  • Tingting Wu
  • Fei Kong
  • William Terzaghi
  • Chunming Wang
  • Jianmin Wan


Key message

OsPPR6, a pentatricopeptide repeat protein involved in editing and splicing chloroplast RNA, is required for chloroplast biogenesis in rice.


The chloroplast has its own genetic material and genetic system, but it is also regulated by nuclear-encoded genes. However, little is known about nuclear-plastid regulatory mechanisms underlying early chloroplast biogenesis in rice. In this study, we isolated and characterized a mutant, osppr6, that showed early chloroplast developmental defects leading to albino leaves and seedling death. We found that the osppr6 mutant failed to form thylakoid membranes. Using map-based cloning and complementation tests, we determined that OsPPR6 encoded a new Pentatricopeptide Repeat (PPR) protein localized in plastids. In the osppr6 mutants, mRNA levels of plastidic genes transcribed by the plastid-encoded RNA polymerase decreased, while those of genes transcribed by the nuclear-encoded RNA polymerase increased. Western blot analyses validated these expression results. We further investigated plastidic RNA editing and splicing in the osppr6 mutants and found that the ndhB transcript was mis-edited and the ycf3 transcript was mis-spliced. Therefore, we demonstrate that OsPPR6, a PPR protein, regulates early chloroplast biogenesis and participates in editing of ndhB and splicing of ycf3 transcripts in rice.


Rice PPR Chloroplast biogenesis RNA editing RNA splicing 



Transmission electron microscope


Nuclear-encoded plastid RNA polymerase


Plastid-encoded RNA polymerase


Pentatricopeptide repeat protein


Multiple organellar RNA editing factors


Receptor interacting protein


Ethyl methyl sulfonate


Open reading frame


Simple sequence repeats




Green fluorescent protein


Chloroplast transit peptide


Reactive oxygen species




Nitroblue tetrazolium


Stain coomassie brilliant blue stain


RNA interference


Porphobilinogen deaminase



The National Key Research and Development Project (2016YFD0101107, 2016YFD0100700), and National Key Technology Support Program project (2015BAD01B02-7), China supported this study. CW was supported by the “Shuangchuang”, Project (2012), and “Innovation Team Core Member” (2013) 140, Jiangsu Province, China. The funding agencies had no role in the study design, data collection and analysis, decision to publish, or manuscript preparation.

Author Contributions

CW conceived the experiments and wrote the manuscript; JW supervised this research; J.T. performed the experiments and wrote the manuscript; WZ and FK provided the plant materials; KW, GC, JS, YT, TW, JY, HA and TW participated in the experiments; WT revised manuscript; the all authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

11103_2017_654_MOESM1_ESM.docx (6.5 mb)
Supplementary material 1 (DOCX 6652 KB)


  1. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiol 24:1–15CrossRefPubMedPubMedCentralGoogle Scholar
  2. Asakura Y, Barkan A (2006) Arabidopsis orthologs of maize chloroplast splicing factors promote splicing of orthologous and species-specific group II introns. Plant Physiol 142:1656–1663CrossRefPubMedPubMedCentralGoogle Scholar
  3. Asakura Y, Barkan A (2007) A CRM domain protein functions dually in group I and group II intron splicing in land plant chloroplasts. Plant Cell 19:3864–3875CrossRefPubMedPubMedCentralGoogle Scholar
  4. Asano T, Miyao A, Hirochika H, Kikuchi S, Kadowaki K (2013) A pentatricopeptide repeat gene of rice is required for splicing of chloroplast transcripts and RNA editing of ndhA. Plant Biotechnol-NAR 30:57–64CrossRefGoogle Scholar
  5. Barkan A, Small I (2014) Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol 65:415–442CrossRefPubMedGoogle Scholar
  6. Barkan A, Rojas M, Fujii S, Yap A, Chong YS, Bond CS, Small I (2012) A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins. PLoS Genet 8:e1002910CrossRefPubMedPubMedCentralGoogle Scholar
  7. Beick S, Schmitz-Linneweber C, Williams-Carrier R, Jensen B, Barkan A (2008) The pentatricopeptide repeat protein PPR5 stabilizes a specific tRNA precursor in maize chloroplasts. Mol Cell Biol 28:5337–5347CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bonen L (2008) Cis- and trans-splicing of group II introns in plant mitochondria. Mitochondrion 8:26–34CrossRefPubMedGoogle Scholar
  9. Burrows PA, Sazanov LA, Svab Z, Maliga P, Nixon PJ (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J 17:868–876CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cao ZL, Yu QB, Sun Y, Lu Y, Cui YL, Yang ZN (2011) A point mutation in the pentatricopeptide repeat motif of the AtECB2 protein causes delayed chloroplast development. J Integr Plant Biol 53:258–269CrossRefPubMedGoogle Scholar
  11. Chateigner-Boutin AL, Small I (2007) A rapid high-throughput method for the detection and quantification of RNA editing based on high-resolution melting of amplicons. Nucleic Acids Res 35:e114CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chateigner-Boutin A, Ramos-Vega M, Guevara-Garcà AA, Andrà SC, de la Luz Gutià Rrez-Nava MA, Cantero A, Delannoy E, Jimà Nez LF, Lurin C, Small I, Leà NP (2008) CLB19, a pentatricopeptide repeat protein required for editing of rpoA and clpP chloroplast transcripts. Plant J 56:590–602CrossRefPubMedGoogle Scholar
  13. Chateigner-Boutin A, des Francs-Small CC, Delannoy E, Kahlau S, Tanz SK, de Longevialle AF, Fujii S, Small I (2011) OTP70 is a pentatricopeptide repeat protein of the E subgroup involved in splicing of the plastid transcript rpoC1. Plant J 65:532–542CrossRefPubMedGoogle Scholar
  14. Corneille S, Lutz K, Maliga P (2000) Conservation of RNA editing between rice and maize plastids: are most editing events dispensable? Mol Gen Genetics MGG 264:419–424CrossRefPubMedGoogle Scholar
  15. de Longevialle AF, Hendrickson L, Taylor NL, Delannoy E, Lurin C, Badger M, Millar AH, Small I (2008) The pentatricopeptide repeat gene OTP51 with two LAGLIDADG motifs is required for thecis-splicing of plastid ycf3 intro-2 in Arabidopsis thaliana. Plant J 56:157–168CrossRefPubMedGoogle Scholar
  16. de Longevialle AF, Small ID, Lurin C (2010) Nuclearly encoded splicing factors implicated in RNA splicing in higher plant organelles. Mol Plant 3:691–705CrossRefPubMedGoogle Scholar
  17. Dong H, Fei GL, Wu CY, Wu FQ, Sun YY, Chen MJ, Ren YL, Zhou KN, Cheng ZJ, Wang JL, Jiang L, Zhang X, Guo XP, Lei CL, Su N, Wang H, Wan JM (2013) A Rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiol 162:1867–1880CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fujii S, Small I (2011) The evolution of RNA editing and pentatricopeptide repeat genes. New Phytol 191:37–47CrossRefPubMedGoogle Scholar
  19. Hanaoka M, Kanamaru K, Fujiwara M, Takahashi H, Tanaka K (2005) Glutamyl-tRNA mediates a switch in RNA polymerase use during chloroplast biogenesis. EMBO Rep 6:545–550CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jiang Y, Fan SL, Song MZ, Yu JN, Yu SX (2012) Identification of RNA editing sites in cotton (Gossypium hirsutum) chloroplasts and editing events that affect secondary and three-dimensional protein structures. Genet Mol Res 11:987–1001CrossRefPubMedGoogle Scholar
  21. Kaminaka H, Morita S, Tokumoto M, Yokoyama H, Masumura T, Tanaka K (1999) Molecular cloning and characterization of a cDNA for an iron-superoxide dismutase in rice (Oryza sativa L.). Biosci Biotechnol Biochem 63:302–308CrossRefPubMedGoogle Scholar
  22. Khrouchtchova A, Monde RA, Barkan A (2012) A short PPR protein required for the splicing of specific group II introns in angiosperm chloroplasts. RNA 18:1197–1209CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kroeger TS, Watkins KP, Friso G, van Wijk KJ, Barkan A (2009) A plant-specific RNA-binding domain revealed through analysis of chloroplast group II intron splicing. Proc Natl Acad Sci USA 106:4537–4542CrossRefPubMedPubMedCentralGoogle Scholar
  24. Li H, Jiang L, Youn JH, Sun W, Cheng Z, Jin T, Ma X, Guo X, Wang J, Zhang X, Wu F, Wu C, Kim SK, Wan J (2013) A comprehensive genetic study reveals a crucial role of CYP90D2/D2 in regulating plant architecture in rice (Oryza sativa). New Phytol 200:1076–1088CrossRefPubMedGoogle Scholar
  25. Liere K, Maliga P (1999) In vitro characterization of the tobacco rpoB promoter reveals a core sequence motif conserved between phage-type plastid and plant mitochondrial promoters. EMBO J 18:249–257CrossRefPubMedPubMedCentralGoogle Scholar
  26. Liu P, Wang CM, Li L, Sun F, Liu P, Yue GH (2011) Mapping QTLs for oil traits and eQTLs for oleosin genes in jatropha. BMC Plant Biol 11:132CrossRefPubMedPubMedCentralGoogle Scholar
  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  28. Lurin C (2004) Genome-wide analysis of arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell Online 16:2089–2103CrossRefGoogle Scholar
  29. Naver H, Boudreau E, Rochaix JD (2001) Functional studies of Ycf3: its role in assembly of photosystem I and interactions with some of its subunits. Plant Cell 13:2731–2745CrossRefPubMedPubMedCentralGoogle Scholar
  30. Okuda K, Chateigner-Boutin AL, Nakamura T, Delannoy E, Sugita M, Myouga F, Motohashi R, Shinozaki K, Small I, Shikanai T (2009) Pentatricopeptide repeat proteins with the DYW motif have distinct molecular functions in RNA editing and RNA cleavage in Arabidopsis chloroplasts. Plant Cell 21:146–156CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ostersetzer O, Cooke AM, Watkins KP, Barkan A (2005) CRS1, a chloroplast group II intron splicing factor, promotes intron folding through specific interactions with two intron domains. Plant Cell 17:241–255CrossRefPubMedPubMedCentralGoogle Scholar
  32. Pfalz J, Liere K, Kandlbinder A, Dietz KJ, Oelmuller R (2006) pTAC2, -6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 18:176–197CrossRefPubMedPubMedCentralGoogle Scholar
  33. Pfannschmidt T (2010) Plastidial retrograde signalling—a true “plastid factor” or just metabolite signatures? Trends Plant Sci 15:427–435CrossRefPubMedGoogle Scholar
  34. Ren Y, Wang Y, Liu F, Zhou K, Ding Y, Zhou F, Wang Y, Liu K, Gan L, Ma W, Han X, Zhang X, Guo X, Wu F, Cheng Z, Wang J, Lei C, Lin Q, Jiang L, Wu C, Bao Y, Wang H, Wan J (2014) Glutelin precursor accumulation3 encodes a regulator of post-golgi vesicular traffic essential for vacuolar protein sorting in rice endosperm. Plant Cell 26:410–425CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ruwe H, Schmitz-Linneweber C (2012) Short non-coding RNA fragments accumulating in chloroplasts: footprints of RNA binding proteins? Nucleic Acids RES 40:3106–3116CrossRefPubMedGoogle Scholar
  36. Sasaki Y, Kozaki A, Ohmori A, Iguchi H, Nagano Y (2001) Chloroplast RNA editing required for functional acetyl-CoA carboxylase in plants. J Biol Chem 276:3937–3940CrossRefPubMedGoogle Scholar
  37. Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13:663–670CrossRefPubMedGoogle Scholar
  38. Schmitz-Linneweber C, Williams-Carrier RE, Williams-Voelker PM, Kroeger TS, Vichas A, Barkan A (2006) A Pentatricopeptide repeat protein facilitates the trans-splicing of the maize chloroplast rps12 Pre-mRNA. Plant Cell Online 18:2650–2663CrossRefGoogle Scholar
  39. Sun J, Zheng T, Yu J, Wu T, Wang X, Chen G, Tian Y, Zhang H, Wang Y, Terzaghi W, Wang C, Wan J (2017) TSV, a putative plastidic oxidoreductase, protects rice chloroplasts from cold stress during development by interacting with plastidic thioredoxin Z. New Phytol 215:240–255CrossRefPubMedGoogle Scholar
  40. Takenaka M, Zehrmann A, Verbitskiy D, Kugelmann M, Hartel B, Brennicke A (2012) Multiple organellar RNA editing factor (MORF) family proteins are required for RNA editing in mitochondria and plastids of plants. Proc Natl Acad Sci USA 109:5104–5109CrossRefPubMedPubMedCentralGoogle Scholar
  41. Takenaka M, Zehrmann A, Verbitskiy D, Hartel B, Brennicke A (2013) RNA editing in plants and its evolution. Annu Rev Genet 47:335–352CrossRefPubMedGoogle Scholar
  42. Tan J, Tan Z, Wu F, Sheng P, Heng Y, Wang X, Ren Y, Wang J, Guo X, Zhang X, Cheng Z, Jiang L, Liu X, Wang H, Wan J (2014) A novel chloroplast-localized pentatricopeptide repeat protein involved in splicing affects chloroplast development and abiotic stress response in rice. Mol Plant 7:1329–1349CrossRefPubMedGoogle Scholar
  43. ThordalChristensen H, Zhang ZG, Wei YD, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194CrossRefGoogle Scholar
  44. Tseng C, Sung T, Li Y, Hsu S, Lin C, Hsieh M (2010) Editing of accD and ndhF chloroplast transcripts is partially affected in the Arabidopsis vanilla cream1 mutant. Plant Mol Biol 73:309–323CrossRefPubMedGoogle Scholar
  45. Wang P (2006) Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiol 141:465–474CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wang L, Wang C, Wang Y, Niu M, Ren Y, Zhou K, Zhang H, Lin Q, Wu F, Cheng Z, Wang J, Zhang X, Guo X, Jiang L, Lei C, Wang J, Zhu S, Zhao Z, Wan J (2016) WSL3, a component of the plastid-encoded plastid RNA polymerase, is essential for early chloroplast development in rice. Plant Mol Biol 92(4–5):581–595CrossRefPubMedGoogle Scholar
  47. Watkins KP, Kroeger TS, Cooke AM, Williams-Carrier RE, Friso G, Belcher SE, van Wijk KJ, Barkan A (2007) A ribonuclease III domain protein functions in group II intron splicing in maize chloroplasts. Plant Cell 19:2606–2623CrossRefPubMedPubMedCentralGoogle Scholar
  48. Watkins KP, Rojas M, Friso G, van Wijk KJ, Meurer J, Barkan A (2011) APO1 promotes the splicing of chloroplast group II introns and harbors a plant-specific zinc-dependent rna binding domain. Plant Cell 23:1082–1092CrossRefPubMedPubMedCentralGoogle Scholar
  49. Williams PM, Barkan A (2003) A chloroplast-localized PPR protein required for plastid ribosome accumulation. Plant J 36:675–686CrossRefPubMedGoogle Scholar
  50. Yap A, Kindgren P, Colas Des Francs-Small C, Kazama T, Tanz SK, Toriyama K, Small I (2015) AEF1/MPR25 is implicated in RNA editing of plastid atpF and mitochondrial nad5, and also promotesatpF splicing in Arabidopsis and rice. Plant J 81:661–669CrossRefPubMedGoogle Scholar
  51. Yu Q, Jiang Y, Chong K, Yang Z (2009) AtECB2, a pentatricopeptide repeat protein, is required for chloroplast transcript accD RNA editing and early chloroplast biogenesis in Arabidopsis thaliana. Plant J 59:1011–1023CrossRefPubMedGoogle Scholar
  52. Zehrmann A, Verbitskiy D, Härtel B, Brennicke A, Takenaka M (2010) RNA editing competence oftrans-factor MEF1 is modulated by ecotype-specific differences but requires the DYW domain. FEBS Lett 584:4181–4186CrossRefPubMedGoogle Scholar
  53. Zhang HD, Cui YL, Huang C, Yin QQ, Qin XM (2015) PPR protein PDM1/SEL1 is involved in RNA editing and splicing of plastid genes in Arabidopsis thaliana. Photosynth Res 126:311–321CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Jianpeng Tang
    • 1
    • 2
  • Wenwei Zhang
    • 1
  • Kai Wen
    • 1
  • Gaoming Chen
    • 1
  • Juan Sun
    • 1
  • Yunlu Tian
    • 1
  • Weijie Tang
    • 1
  • Jun Yu
    • 1
  • Hongzhou An
    • 1
  • Tingting Wu
    • 1
  • Fei Kong
    • 1
  • William Terzaghi
    • 4
  • Chunming Wang
    • 1
    • 2
  • Jianmin Wan
    • 1
    • 3
  1. 1.State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
  2. 2.Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjingChina
  3. 3.National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
  4. 4.Department of BiologyWilkes UniversityWilkes-BarreUSA

Personalised recommendations