Skip to main content
Log in

Methylglyoxal detoxification by a DJ-1 family protein provides dual abiotic and biotic stress tolerance in transgenic plants

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Methylglyoxal (MG) is a key signaling molecule resulting from glycolysis and other metabolic pathways. During abiotic stress, MG levels accumulate to toxic levels in affected cells. However, MG is routinely detoxified through the action of DJ1/PARK7/Hsp31 proteins that are highly conserved across kingdoms and mutations in such genes are associated with neurodegenerative diseases. Here, we report for the first time that, similar to abiotic stresses, MG levels increase during biotic stresses in plants, likely contributing to enhanced susceptibility to a wide range of stresses. We show that overexpression of yeast Heat shock protein 31 (Hsp31), a DJ-1 homolog with robust MG detoxifying capabilities, confers dual biotic and abiotic stress tolerance in model plant Nicotiana tabacum. Strikingly, overexpression of Hsp31 in tobacco imparts robust stress tolerance against diverse biotic stress inducers such as viruses, bacteria and fungi, in addition to tolerance against a range of abiotic stress inducers. During stress, Hsp31 was targeted to mitochondria and induced expression of key stress-related genes. These results indicate that Hsp31 is a novel attractive tool to engineer plants against both biotic and abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Acknowledgements

The authors acknowledge access to Imaging, greenhouse and sequencing facilities from their respective institutions. Thanks to Prof. K. Veluthambi for pBIN19 vector, viral clones and Agrobacterium strain LBA4404 (pSB1), Dr. Radhika Venkatesan for P. syringae DC3000, Prof. Janardhana for Alternaria Spp., Swetha Chenna for help in structure prediction and N. D. Sunitha for comments.

Author contributions

PVS and PD designed all experiments, discussed results and wrote the manuscript. MP performed most of the experiments. KB designed constructs and performed microscopy.

Funding

PVS acknowledges support from Ramanujan Fellowship (SR/S2/RJN-109/2012; Department of Science and Technology, Government of India). PVS lab is supported by NCBS-TIFR core funding and a grant (BT/PR12394/AGIII/103/891/2014) from Department of Biotechnology, Government of India. PDS acknowledges support from Swarnajayanti Fellowship (DST/SJF/LS-01/2011–2012), DBT-IISc partnership program (DBT/BF/PR/INS/2011-12/IISc) and UGC-CAS SAP-II program (UGC LT. No. F. 5-2/2012. SAP-II). KB acknowledges research fellowship from CSIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Shivaprasad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 4632 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melvin, P., Bankapalli, K., D’Silva, P. et al. Methylglyoxal detoxification by a DJ-1 family protein provides dual abiotic and biotic stress tolerance in transgenic plants. Plant Mol Biol 94, 381–397 (2017). https://doi.org/10.1007/s11103-017-0613-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-017-0613-9

Keywords

Navigation