Plant Molecular Biology

, Volume 94, Issue 6, pp 577–594 | Cite as

An integrative overview of the molecular and physiological responses of sugarcane under drought conditions

  • Camilo Elber Vital
  • Andrea Giordano
  • Eduardo de Almeida Soares
  • Thomas Christopher Rhys Williams
  • Rosilene Oliveira Mesquita
  • Pedro Marcus Pereira Vidigal
  • Amanda de Santana Lopes
  • Túlio Gomes Pacheco
  • Marcelo Rogalski
  • Humberto Josué de Oliveira Ramos
  • Marcelo Ehlers Loureiro


Drought is the main abiotic stress constraining sugarcane production. However, our limited understanding of the molecular mechanisms involved in the drought stress responses of sugarcane impairs the development of new technologies to increase sugarcane drought tolerance. Here, an integrated approach was performed to reveal the molecular and physiological changes in two closely related sugarcane cultivars, including the most extensively planted cultivar in Brazil (cv. RB867515), in response to moderate (−0.5 MPa) and severe (−1 MPa) drought stress at the transcriptional, translational, and posttranslational levels. The results show common and cultivar exclusive changes in specific genes related to photosynthesis, carbohydrate, amino acid, and phytohormone metabolism. The novel phosphoproteomics and redox proteomic analysis revealed the importance of posttranslational regulation mechanisms during sugarcane drought stress. The shift to soluble sugar, secondary metabolite production, and activation of ROS eliminating processes in response to drought tolerance were mechanisms exclusive to cv. RB867515, helping to explain the better performance and higher production of this cultivar under these stress conditions.


Abiotic stress Drought tolerance Metabolomics Proteomics Sugarcane Transcriptomics 



The authors would like to thank the Núcleo de Análise de Biomoléculas (NuBioMol) and Sugarcane Breeding Program, Universidade Federal de Viçosa, MG, Brazil and the Fundação Osvaldo Cruz (Fiocruz) for providing the facilities necessary for execution of the experiments. We thank Glaucia Souza and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for providing access to the sugarcane genome database. This work was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq), Petrobras, and Instituto Nacional de Ciência e Tecnologia do Bioetanol (INCT Bioetanol).

Author contributions

CEV and AG conducted experiments, analyzed data, and wrote the manuscript; EAS, ROM, ASL, and TGP conducted experiments; TW contributed with metabolomics data analyses and manuscript writing; PMPV analyzed the transcriptomics data; MR contributed to manuscript writing; MEL and HJOR planned and designed the research.

Supplementary material

11103_2017_611_MOESM1_ESM.xlsx (1.1 mb)
Supplementary material 1 (XLSX 1098 KB)
11103_2017_611_MOESM2_ESM.tif (3.5 mb)
Online Resource 11 Fold change overview of the transcriptome, proteome, phosphoproteome and redox proteome under moderate (-0.5MPa) and severe (-1MPa) drought stress in cv. RB867515 and cv. RB855536. Genes and proteins were classified in 36 functional bins according to MapMan. Red indicates upregulation and blue downregulation. The fold change from transcripts is in log2 scale (TIF 3555 KB)
11103_2017_611_MOESM3_ESM.tif (5.1 mb)
Online Resource 12 Fold change overview of the transcriptome, proteome, phosphoproteome and redox proteome comparing cv. RB867515 and cv. RB855536 under control condition. Genes and proteins were classified in 36 functional bins according to MapMan. Red indicates upregulation and blue downregulation. The fold change from transcripts is in log2 scale (TIF 5193 KB)
11103_2017_611_MOESM4_ESM.tif (7 mb)
Online Resource 13 Validation of RNA-Seq data using real-time quantitative PCR (qRT-PCR). Expression level of selected genes in both cultivars (a) RB867515 and (b) RB855536 under drought stress conditions (-0.5 MPa and -1 MPa) (TIF 7134 KB)
11103_2017_611_MOESM5_ESM.tif (7 mb)
Online Resource 14 Total protein spots detected in the proteomics 2D- gel electrophoresis of cv. RB867515 and cv. RB855536 under the three conditions (control, -0.5 MPa and -1 MPa) (TIF 7134 KB)
11103_2017_611_MOESM6_ESM.tif (9.8 mb)
Online Resource 15 Proteomics 2D- gel electrophoresis of cv. RB867515 and cv. RB855536 under the three conditions (control, -0.5 MPa and -1MPa). Protein spots in cv. RB867515 under control treatment (a), cv. RB867515 detected under -0.5MPa (c) cv. RB867515 under -1MPa (e), cv. RB855536 under control treatment (b), cv. RB855536 detected under -0.5MPa (d) cv. RB855536 under -1MPa (f) (TIF 10005 KB)
11103_2017_611_MOESM7_ESM.tif (4.6 mb)
Online Resource 16 Phosphoproteome analysis. Protein ID and fold change of the phosphoproteomics dataset set for cv. RB867515 and cv. RB855536 under drought conditions (-0.5MPa and -1 MPa) (TIF 4710 KB)
11103_2017_611_MOESM8_ESM.tif (8.3 mb)
Online Resource 17 Phosphoproteomics 2D- gel electrophoresis of cv. RB867515 and cv. RB855536 under the three conditions (control, -0.5 MPa and -1 MPa). Protein spots in cv. RB867515 under control treatment (a), cv. RB867515 detected under -0.5MPa (c) cv. RB867515 under -1MPa (e), cv. RB855536 under control treatment (b), in cv. RB855536 detected under -0.5MPa (d) in cv. RB855536 under -1MPa (f) (TIF 8537 KB)
11103_2017_611_MOESM9_ESM.tif (6.9 mb)
Online Resource 18 Redoxproteome analysis. Protein ID and fold change of the proteomics dataset for cv. RB867515 and cv. RB855536 under drought conditions (-0.5MPa and -1 MPa) (TIF 7090 KB)
11103_2017_611_MOESM10_ESM.tif (8.7 mb)
Online Resource 19 Redoxproteomics 2D- gel electrophoresis of cv. RB867515 and cv. RB855536 under the three conditions (control, -0.5 MPa and -1 MPa). Protein spots in cv. RB867515 under control treatment (a), cv. RB855536 detected under control treatment (b), cv. RB867515 detected under -0.5MPa (c), cv. RB855536 detected under -0.5MPa (d) (TIF 8940 KB)
11103_2017_611_MOESM11_ESM.tif (4.7 mb)
Online Resource 20 Differentially expressed genes, proteins and posttranslational modifications in the TCA and glycolysis pathway under moderate (-0.5MPa) and severe (-1MPa) drought stress in RB867515 and RB855536 cultivars. MapMan TCA and glycolysis pathway with color coded squares indicating up- (red) or down- (blue) regulated genes (TR), and or increase (red) or decrease (blue) abundance of proteins (PR), phosphorylation (PH), oxidation (RE) (TIF 4814 KB)


  1. Agrawal GK, Thelen JJ (2009) A high-resolution two dimensional Gel- and Pro-Q DPS-based proteomics workflow for phosphoprotein identification and quantitative profiling. Methods Mol Biol 527(3–19):ix. doi: 10.1007/978-1-60327-834-8_1 Google Scholar
  2. Ali GM, Komatsu S (2006) Proteomic analysis of rice leaf sheath during drought stress. J Proteome Res 5:396–403. doi: 10.1021/pr050291g CrossRefPubMedGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi: 10.1016/S0022-2836(05)80360-2 CrossRefPubMedGoogle Scholar
  4. Aranjuelo I, Molero G, Erice G, Avice JC, Nogués S (2011) Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). J Exp Bot 62:111–123. doi: 10.1093/jxb/erq249 CrossRefPubMedGoogle Scholar
  5. Araújo WL, Ishizaki K, Nunes-Nesi A, Larson TR, Tohge T, Krahnert I, Witt S, Obata T, Schauer N, Graham IA, Leaver CJ, Fernie AR (2010) Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria. Plant Cell 22:1549–1563. doi: 10.1105/tpc.110.075630 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Araújo WL, Tohge T, Ishizaki K, Leaver CJ, Fernie AR (2011) Protein degradation–an alternative respiratory substrate for stressed plants. Trends Plant Sci 16:489–498. doi: 10.1016/j.tplants.2011.05.008 PubMedGoogle Scholar
  7. Arbona V, Manzi M, Ollas C de, Gómez-Cadenas A (2013) Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci 14:4885–4911. doi: 10.3390/ijms14034885 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Aryal UK, Krochko JE, Ross ARS (2012) Identification of phosphoproteins in arabidopsis thaliana leaves using polyethylene glycol fractionation, immobilized metal-ion affinity chromatography, two-dimensional gel electrophoresis and mass spectrometry. J Proteome Res 11:425–437. doi: 10.1021/pr200917t CrossRefPubMedGoogle Scholar
  9. Barbosa M, de Silveira L, de Oliveira M, de Souza V, Ribeiro S (2001) RB867515 sugarcane cultivar. Crop Breed Appl Biotechnol 1:437–438.CrossRefGoogle Scholar
  10. Barbosa MHp, Resende MDV, Dias LADS, Barbosa GV, Oliveira RA, Peternelli LA, Daros E (2012) Genetic improvement of sugar cane for bioenergy: the Brazilian experience in network research with RIDESA. Crop Breed Appl Biotechnol 12:87–98CrossRefGoogle Scholar
  11. Bogeat-Triboulot M-B, Brosché M, Renaut J, Jouve L, Le Thiec D, Fayyaz P, Vinocur B, Witters E, Laukens K, Teichmann T, Altman A, Hausman J-F, Polle A, Kangasjärvi J, Dreyer E (2007) Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol 143:876–892. doi: 10.1104/pp.106.088708 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  13. Casu RE, Dimmock CM, Chapman SC, Grof CPL, McIntyre CL, Bonnett GD, Manners JM (2004) Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling. Plant Mol Biol 54:503–517. doi: 10.1023/B:PLAN.0000038255.96128.41 CrossRefPubMedGoogle Scholar
  14. CONAB (2016) Acompanhamento desafra brasileira: cana-de-açúcar.Google Scholar
  15. Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:619832. doi: 10.1155/2008/619832 CrossRefPubMedGoogle Scholar
  16. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676. doi: 10.1093/bioinformatics/bti610 CrossRefPubMedGoogle Scholar
  17. Couée I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459. doi: 10.1093/jxb/erj027 CrossRefPubMedGoogle Scholar
  18. DaMatta FM, Chaves ARM, Pinheiro HA, Ducatti C, Loureiro ME (2003) Drought tolerance of two field-grown clones of Coffea canephora. Plant Sci 164:111–117. doi: 10.1016/S0168-9452(02)00342-4 CrossRefGoogle Scholar
  19. de Vienne D, Leonardi A, Damerval C, Zivy M (1999) Genetics of proteome variation for QTL characterization: application to drought-stress responses in maize. J Exp Bot 50:303–309. doi: 10.1093/jxb/50.332.303 CrossRefGoogle Scholar
  20. ElSayed AI, Rafudeen MS, Golldack D (2014) Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress. Plant Biol 16:1–8. doi: 10.1111/plb.12053 CrossRefPubMedGoogle Scholar
  21. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212. doi: 10.1051/agro:2008021 CrossRefGoogle Scholar
  22. Fedorova M, Kuleva N, Hoffmann R (2010) Identification, quantification, and functional aspects of skeletal muscle protein-carbonylation in vivo during acute oxidative stress. J Proteome Res 9:2516–2526. doi: 10.1021/pr901182r CrossRefPubMedGoogle Scholar
  23. Fulda S, Mikkat S, Stegmann H, Horn R (2011) Physiology and proteomics of drought stress acclimation in sunflower (Helianthus annuus L.). Plant Biol 13:632–642. doi: 10.1111/j.1438-8677.2010.00426.x CrossRefPubMedGoogle Scholar
  24. Giuliani S, Sanguineti MC, Tuberosa R, Bellotti M, Salvi S, Landi P (2005) Root-ABA1, a major constitutive QTL, affects maize root architecture and leaf ABA concentration at different water regimes. J Exp Bot 56:3061–3070. doi: 10.1093/jxb/eri303 CrossRefPubMedGoogle Scholar
  25. Gomez LD, Steele-King CG, McQueen-Mason SJ (2008) Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytol 178:473–485. doi: 10.1111/j.1469-8137.2008.02422.x CrossRefPubMedGoogle Scholar
  26. Harb A, Krishnan A, Ambavaram MMR, Pereira A (2010) Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154:1254–1271. doi: 10.1104/pp.110.161752 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hoffmann H (2008) Variedades RB de cana-de-açúcar. 1 ed ArarasCCA-UFSCar 30Google Scholar
  28. Huber SC (2007) Exploring the role of protein phosphorylation in plants: from signalling to metabolism. Biochem Soc Trans 35:28–32. doi: 10.1042/BST0350028 CrossRefPubMedGoogle Scholar
  29. Ishizaki K, Schauer N, Larson TR, Graham IA, Fernie AR, Leaver CJ (2006) The mitochondrial electron transfer flavoprotein complex is essential for survival of Arabidopsis in extended darkness. Plant J 47:751–760. doi: 10.1111/j.1365-313X.2006.02826.x CrossRefPubMedGoogle Scholar
  30. Iskandar HM, Casu RE, Fletcher AT, Schmidt S, Xu J, Maclean DJ, Manners JM, Bonnett GD (2011) Identification of drought-response genes and a study of their expression during sucrose accumulation and water deficit in sugarcane culms. BMC Plant Biol 11:12. doi: 10.1186/1471-2229-11-12 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis- epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333. doi: 10.1046/j.1365-313x.2001.01096.x CrossRefPubMedGoogle Scholar
  32. Johansson E, Olsson O, Nyström T (2004) Progression and specificity of protein oxidation in the life cycle of Arabidopsis thaliana. J Biol Chem 279:22204–22208. doi: 10.1074/jbc.M402652200 CrossRefPubMedGoogle Scholar
  33. Junker BH, Klukas C, Schreiber F (2006) VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics 7:109. doi: 10.1186/1471-2105-7-109 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kazan K (2013) Auxin and the integration of environmental signals into plant root development. Ann Bot 112:1655–1665. doi: 10.1093/aob/mct229 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kinoshita N, Wang H, Kasahara H, Liu J, MacPherson C, Machida Y, Kamiya Y, Hannah MA, Chua N-H (2012) IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress. Plant Cell 24:3590–3602. doi: 10.1105/tpc.112.097006 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Langridge P, Paltridge N, Fincher G (2006) Functional genomics of abiotic stress tolerance in cereals. Brief Funct Genomic Proteomic 4:343–354. doi: 10.1093/bfgp/eli005 CrossRefPubMedGoogle Scholar
  37. Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:387–396. doi: 10.1038/nprot.2006.59
  38. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔC(T)) method. Methods 25:402–408. doi: 10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  39. Lommen A (2009) MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal Chem 81:3079–3086. doi: 10.1021/ac900036d CrossRefPubMedGoogle Scholar
  40. Luedemann A, Strassburg K, Erban A, Kopka J (2008) TagFinder for the quantitative analysis of gas chromatography–mass spectrometry (GC–MS)-based metabolite profiling experiments. Bioinformatics 24:732–737. doi: 10.1093/bioinformatics/btn023 CrossRefPubMedGoogle Scholar
  41. Malatrasi M, Corradi M, Svensson JT, Close TJ, Gulli M, Marmiroli N (2006) A branched-chain amino acid aminotransferase gene isolated from Hordeum vulgare is differentially regulated by drought stress. Theor Appl Genet 113:965–976. doi: 10.1007/s00122-006-0339-6 CrossRefPubMedGoogle Scholar
  42. Mesquita RO, de Almeida Soares E, de Barros EG, Loureiro ME (2012) Method optimization for proteomic analysis of soybean leaf: improvements in identification of new and low-abundance proteins. Genet Mol Biol 35:353–361. doi: 10.1590/S1415-47572012000200017 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Meyer E, Aspinwall MJ, Lowry DB, Palacio-Mejía JD, Logan TL, Fay P a, Juenger TE (2014) Integrating transcriptional, metabolomic, and physiological responses to drought stress and recovery in switchgrass (Panicum virgatum L.). BMC Genomics 15:527. doi: 10.1186/1471-2164-15-527 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Moreno J, García-Murria MJ, Marín-Navarro J (2008) Redox modulation of Rubisco conformation and activity through its cysteine residues. J Exp Bot 59:1605–1614. doi: 10.1093/jxb/erm310 CrossRefPubMedGoogle Scholar
  45. Neuhoff V, Stamm R, Eibl H (1985) Clear background and highly sensitive protein staining with Coomassie Blue dyes in polyacrylamide gels: a systematic analysis. Electrophoresis 6:427–448. doi: 10.1002/elps.1150060905 CrossRefGoogle Scholar
  46. Padmalatha KV, Dhandapani G, Kanakachari M, Kumar S, Dass A, Patil DP, Rajamani V, Kumar K, Pathak R, Rawat B, Leelavathi S, Reddy PS, Jain N, Powar KN, Hiremath V, Katageri IS, Reddy MK, Solanke AU, Reddy VS, Kumar PA (2012a) Genome-wide transcriptomic analysis of cotton under drought stress reveal significant down-regulation of genes and pathways involved in fibre elongation and up-regulation of defense responsive genes. Plant Mol Biol 78:223–246. doi: 10.1007/s11103-011-9857-y CrossRefPubMedGoogle Scholar
  47. Padmalatha KV, Dhandapani G, Kanakachari M, Kumar S, Dass A, Patil DP, Rajamani V, Kumar K, Pathak R, Rawat B, Leelavathi S, Reddy PS, Jain N, Powar KN, Hiremath V, Katageri IS, Reddy MK, Solanke AU, Reddy VS, Kumar PA (2012b) Genome-wide transcriptomic analysis of cotton under drought stress reveal significant down-regulation of genes and pathways involved in fibre elongation and up-regulation of defense responsive genes. Plant Mol Biol 78:223–246. doi: 10.1007/s11103-011-9857-y CrossRefPubMedGoogle Scholar
  48. Parida AK, Dagaonkar VS, Phalak MS, Umalkar G V., Aurangabadkar LP (2007) Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnol Rep 1:37–48. doi: 10.1007/s11816-006-0004-1 CrossRefGoogle Scholar
  49. Parry MAJ (2002) Rubisco activity: effects of drought stress. Ann Bot 89:833–839. doi: 10.1093/aob/mcf103 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Payton P, Kottapalli KR, Rowland D, Faircloth W, Guo B, Burow M, Puppala N, Gallo M (2009) Gene expression profiling in peanut using high density oligonucleotide microarrays. BMC Genomics 10:265. doi: 10.1186/1471-2164-10-265 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Pelloux J, Jolivet Y, Fontaine V, Banvoy J, Dizengremel P (2001) Changes in Rubisco and Rubisco activase gene expression and polypeptide content in Pinus halepensis M. subjected to ozone and drought. Plant Cell Environ 24:123–131. doi: 10.1046/j.1365-3040.2001.00665.x CrossRefGoogle Scholar
  52. Peng Z, Wang M, Li F, Lv H, Li C, Xia G (2009) A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol Cell Proteomics 8:2676–2686. doi: 10.1074/mcp.M900052-MCP200 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Prasch CM, Sonnewald U (2013) Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162:1849–1866. doi: 10.1104/pp.113.221044 CrossRefPubMedPubMedCentralGoogle Scholar
  54. R Development Core Team (2011) A language and environment for statistical computing. 409.Google Scholar
  55. Ramesh P (2000) Sugarcane Breeding Institute, Coimbatore, India effect of different levels of drought during the formative phase on growth parameters and its relationship with dry matter accumulation in sugarcane. J Agron Crop Sci 185:83–89. doi: 10.1046/j.1439-037x.2000.00404.x CrossRefGoogle Scholar
  56. Rinalducci S, Murgiano L, Zolla L (2008) Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. J Exp Bot 59:3781–3801. doi: 10.1093/jxb/ern252 CrossRefPubMedGoogle Scholar
  57. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. doi: 10.1093/bioinformatics/btp616 CrossRefPubMedGoogle Scholar
  58. Rodrigues FA, Da Graça JP, De Laia ML, Nhani-Jr A, Galbiati JA, Ferro MIT, Ferro JA, Zingaretti SM (2011) Sugarcane genes differentially expressed during water deficit. Biol Plant 55:43–53. doi: 10.1007/s10535-011-0006-x CrossRefGoogle Scholar
  59. Santos F, Borém A, Caldas C (2015) Sugarcane: agricultural production, bioenergy and ethanol. Academic Press, CambridgeGoogle Scholar
  60. Seiler C, Harshavardhan VT, Rajesh K, Reddy PS, Strickert M, Rolletschek H, Scholz U, Wobus U, Sreenivasulu N (2011) ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. J Exp Bot 62:2615–2632. doi: 10.1093/jxb/erq446 CrossRefPubMedGoogle Scholar
  61. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860. doi: 10.1038/nprot.2006.468 CrossRefPubMedGoogle Scholar
  62. Singh RP (1987) Varietal differences in growth characteristics in sugarcane. J Agri Sci 108:245–247CrossRefGoogle Scholar
  63. Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939CrossRefPubMedGoogle Scholar
  64. Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N, Suzuki H, Saito K, Shibata D, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2009) Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57:1065–1078. doi: 10.1111/j.1365-313X.2008.03748.x CrossRefPubMedGoogle Scholar
  65. Van Dillewijn D (1952) Botany of sugarcaneGoogle Scholar
  66. Vincent D, Lapierre C, Pollet B, Cornic G, Negroni L, Zivy M (2005) Water deficits affect caffeate O-methyltransferase, lignification, and related enzymes in maize leaves. A proteomic investigation. Plant Physiol 137:949–960. doi: 10.1104/pp.104.050815.2 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. doi: 10.1007/s00425-003-1105-5 CrossRefPubMedGoogle Scholar
  68. Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138. doi: 10.1093/bioinformatics/btp612 CrossRefPubMedGoogle Scholar
  69. Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ (2012) Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot 63:3499–3509. doi: 10.1093/jxb/ers148 CrossRefPubMedGoogle Scholar
  70. Witt S, Galicia L, Lisec J, Cairns J, Tiessen A, Araus JL, Palacios-Rojas N, Fernie AR (2012) Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally controlled drought stress. Mol Plant 5:401–417. doi: 10.1093/mp/ssr102 CrossRefPubMedGoogle Scholar
  71. Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685. doi: 10.1111/j.1365-313X.2009.04092.x CrossRefPubMedGoogle Scholar
  72. Zhu B, Su J, Chang M, Verma DPS, Fan Y-L, Wu R (1998) Overexpression of a ∆1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water- and salt-stress in transgenic rice. Plant Sci 139:41–48. doi: 10.1016/S0168-9452(98)00175-7 CrossRefGoogle Scholar
  73. Zhu M, Monroe JG, Suhail Y, Villiers F, Mullen J, Pater D, Hauser F, Jeon BW, Bader JS, Kwak JM, Schroeder JI, Mckay JK, Assmann SM (2016) Tansley review Molecular and systems approaches towards drought-tolerant canola cropsGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Camilo Elber Vital
    • 1
  • Andrea Giordano
    • 1
  • Eduardo de Almeida Soares
    • 1
  • Thomas Christopher Rhys Williams
    • 1
    • 4
  • Rosilene Oliveira Mesquita
    • 1
    • 5
  • Pedro Marcus Pereira Vidigal
    • 2
  • Amanda de Santana Lopes
    • 1
  • Túlio Gomes Pacheco
    • 1
  • Marcelo Rogalski
    • 1
  • Humberto Josué de Oliveira Ramos
    • 3
  • Marcelo Ehlers Loureiro
    • 1
  1. 1.Departamento de Biologia VegetalUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Núcleo de Análise de Biomoléculas (NuBioMol), Centro de Ciências BiológicasUniversidade Federal de ViçosaViçosaBrazil
  3. 3.Departamento de Bioquímica e Biologia MolecularUniversidade Federal de ViçosaViçosaBrazil
  4. 4.Departamento de BotânicaUniversidade de BrasíliaBrasíliaBrazil
  5. 5.Departamento de FitotecniaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations