Plant Molecular Biology

, Volume 94, Issue 1–2, pp 33–44 | Cite as

Identification of the ligand of Pru p 3, a peach LTP

  • Nuria Cubells-Baeza
  • Cristina Gómez-Casado
  • Leticia Tordesillas
  • Carmen Ramírez-Castillejo
  • María Garrido-Arandia
  • Pablo González-Melendi
  • María Herrero
  • Luis F. Pacios
  • Araceli Díaz-PeralesEmail author


Key message

Pru p 3, a peach LTP, is located in pollinated flower styles and secreting downy hairs, transporting a derivative of camptothecin bound to phytosphingosine. Pru p 3 may inhibit a second pollination and may keep away herbivores until seed maturation.


The allergen Pru p 3, a peach lipid transfer protein, has been well studied. However, its physiological function remains to be elucidated. Our results showed that Pru p 3 usually carries a lipid ligand that play an essential role in its function in plants. Using ESI-qToF, we observed that the ligand was a derivative of camptothecin binding to phytosphingosine, wich that is inserted into the hydrophobic tunnel of the protein. In addition, the described ligand displayed topoisomerase I activity inhibition and self-fluorescence, both recognized as camptothecin properties. During flower development, the highest expression of Pru p 3 was detected in the styles of pollinated flowers, in contrast to its non-expression in unpollinated pistils, where expression decreased after anthesis. During ripening, the expression of Pru p 3 were observed mainly in peel but not in pulp. In this sense, Pru p 3 protein was also localized in trichomes covering the fruit epidermis.


Pru p 3 Lipid transfer protein Secondary metabolites Camptothecin Flower development Pollination Fruit development 



The authors thank the Centro de Supercomputación y Visualización de Madrid (CeSViMa) and Centre for Metabolomics and Bioanalysis (CEMBIO) for computing resources and technical assistance. The study was supported by the Ministry of Science and Innovation (project BIO2013-041403-R) and FIS-Thematic Networks and Co-operative Research Centres: RIRAAF (RD12/0013/0014). The funders had no role in the study design, data collection and analysis, the decision to publish, or the preparation of the manuscript.

Author contributions

Sample collection: MH; Experimental design and analysis of results: PGM, MH, LFP, AD-P; Experimental development: NCB, CGC, LT; Modelling and molecular dynamics analysis: MGA, LFP; Confocal microscopy: CRC, PGM.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. Bonghi C et al (2011) A microarray approach to identify genes involved in seed-pericarp cross-talk and development in peach. BMC Plant Biol 11:107CrossRefPubMedPubMedCentralGoogle Scholar
  2. Borges JP, Jauneau A, Brule C, Culerrier R, Barre A, Didier A, Rouge P (2006) The lipid transfer proteins (LTP) essentially concentrate in the skin of Rosaceae fruits as cell surface exposed allergens. Plant Physiol Biochem 44:535–542CrossRefPubMedGoogle Scholar
  3. Botton A, Begheldo M, Rasori A, Bonghi C, Tonutti P (2002) Differential expression of two lipid transfer protein genes in reproductive organs of peach (Prunus persica L. Batsch). Plant Sci 163:993–1000CrossRefGoogle Scholar
  4. Botton A, Andreotti C, Costa G, Ramina A (2009) Peach (Prunus persica L. Batsch) allergen-encoding genes are developmentally regulated and affected by fruit load and light radiation. J Agricu Food Chem 57:724–734CrossRefGoogle Scholar
  5. Chae K, Gonong BJ, Kim SC, Kieslich CA, Morikis D, Balasubramanian S, Lord EM (2010) A multifaceted study of stigma/style cysteine-rich adhesin (SCA)-like Arabidopsis lipid transfer proteins (LTPs) suggests diversified roles for these LTPs in plant growth and reproduction. J Exp Bot 61:4277–4290CrossRefPubMedPubMedCentralGoogle Scholar
  6. Charvolin D, Douliez JP, Marion D, Cohen-Addad C, Pebay-Peyroula E (1999) The crystal structure of a wheat nonspecific lipid transfer protein (ns-LTP1) complexed with two molecules of phospholipid at 2.1 A resolution. Eur J Biochem/FEBS 264:562–568CrossRefGoogle Scholar
  7. Dardick CD, Callahan AM, Chiozzotto R, Schaffer RJ, Piagnani MC, Scorza R (2010) Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. BMC Biol 8:13CrossRefPubMedPubMedCentralGoogle Scholar
  8. Diaz-Perales A et al (2000) Lipid-transfer proteins as potential plant panallergens: cross-reactivity among proteins of Artemisia pollen, Castanea nut and Rosaceae fruits, with different IgE-binding capacities. Clin Exp Allergy 30:1403–1410CrossRefPubMedGoogle Scholar
  9. Diaz-Perales A, Garcia-Casado G, Sanchez-Monge R, Garcia-Selles FJ, Barber D, Salcedo G (2002) cDNA cloning and heterologous expression of the major allergens from peach and apple belonging to the lipid-transfer protein family. Clin Exp Allergy 32:87–92CrossRefPubMedGoogle Scholar
  10. Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902CrossRefPubMedPubMedCentralGoogle Scholar
  11. Garrido-Arandia M, Gomez-Casado C, Diaz-Perales A, LF P (2014) Molecular Dynamics of major allergens from Alternaria, birch pollen and peach. Mol Inf 33:682–694CrossRefGoogle Scholar
  12. Hamilton JA (2004) Fatty acid interactions with proteins: what X-ray crystal and NMR solution structures tell us. Prog Lipid Res 43:177–199CrossRefPubMedGoogle Scholar
  13. Herrero M, Arbeloa A (1989) Influence of the pistil on pollen tube kinetics in peach (Prunus persica (L.) Batsch). Am J Bot 176:1441–1447CrossRefGoogle Scholar
  14. Isah T, Mujib A (2015) Camptothecin from Nothapodytes nimmoniana: review on biotechnology applications. Acta Physiologiae Plantarum 37:1–14CrossRefGoogle Scholar
  15. Kader JC (1996) Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:627–654CrossRefPubMedGoogle Scholar
  16. Kulkarni AV, Patwardhan AA, Lele U, Malpathak NP (2010) Production of camptothecin in cultures of Chonemorpha grandiflora. Pharmacognosy Res 2:296–299CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lombardo VA et al (2011) Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage. Plant Physiol 157:1696–1710CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lorence A, Nessler CL (2004) Camptothecin, over four decades of surprising findings. Phytochemistry 65:2735–2749CrossRefPubMedGoogle Scholar
  19. Molina A, Garcia-Olmedo F (1993) Developmental and pathogen-induced expression of three barley genes encoding lipid transfer proteins. Plant J 4:983–991CrossRefPubMedGoogle Scholar
  20. Pacios LF, Gomez-Casado C, Tordesillas L, Palacin A, Sanchez-Monge R, Diaz-Perales A (2012) Computational study of ligand binding in lipid transfer proteins: structures, interfaces, and free energies of protein-lipid complexes. J Comput Chem 33:1831–1844CrossRefPubMedGoogle Scholar
  21. Palacin A et al (2012) Graph based study of allergen cross-reactivity of plant lipid transfer proteins (LTPs) using microarray in a multicenter study. PloS One 7:e50799CrossRefPubMedPubMedCentralGoogle Scholar
  22. Pasquato N, Berni R, Folli C, Folloni S, Cianci M, Pantano S, Helliwell JR, Zanotti G (2006) Crystal structure of peach Pru p 3, the prototypic member of the family of plant non-specific lipid transfer protein pan-allergens. J Mol Biol 356(3):684–694CrossRefPubMedGoogle Scholar
  23. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612CrossRefPubMedGoogle Scholar
  24. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802CrossRefPubMedPubMedCentralGoogle Scholar
  25. Salcedo G, Sanchez-Monge R, Barber D, Diaz-Perales A (2007) Plant non-specific lipid transfer proteins: an interface between plant defence and human allergy. Biochim Biophys Acta 1771:781–791CrossRefPubMedGoogle Scholar
  26. Salminen TA, Blomqvist K, Edqvist J (2016) Lipid transfer proteins: classification, nomenclature, structure, and function. Planta 244:971–997CrossRefPubMedPubMedCentralGoogle Scholar
  27. Shin JH et al (2014) A lipidomic platform establishment for structural identification of skin ceramides with non-hydroxyacyl chains. Anal Bioanal Chem 406:1917–1932CrossRefPubMedGoogle Scholar
  28. Sirikantaramas S, Taura F, Tanaka Y, Ishikawa Y, Morimoto S, Shoyama Y (2005) Tetrahydrocannabinolic acid synthase, the enzyme controlling marijuana psychoactivity, is secreted into the storage cavity of the glandular trichomes. Plant Cell Physiol 46:1578–1582CrossRefPubMedGoogle Scholar
  29. Sirikantaramas S, Sudo H, Asano T, Yamazaki M, Saito K (2007) Transport of camptothecin in hairy roots of Ophiorrhiza pumila. Phytochemistry 68:2881–2886CrossRefPubMedGoogle Scholar
  30. Sossountzov L et al (1991) Spatial and temporal expression of a maize lipid transfer protein gene. Plant Cell 3:923–933CrossRefPubMedPubMedCentralGoogle Scholar
  31. Sun Y et al (2011) Pyrosequencing of the Camptotheca acuminata transcriptome reveals putative genes involved in camptothecin biosynthesis and transport. BMC Genom 12:533CrossRefGoogle Scholar
  32. Thoma S, Kaneko Y, Somerville C (1993) A non-specific lipid transfer protein from Arabidopsis is a cell wall protein. Plant J 3:427–436CrossRefPubMedGoogle Scholar
  33. Tordesillas L et al (2013) Transport of Pru p 3 across gastrointestinal epithelium-an essential step towards the induction of food allergy? Clin Exp Allergy 43:1374–1383CrossRefPubMedGoogle Scholar
  34. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461PubMedPubMedCentralGoogle Scholar
  35. Wen-Zhe L (2004) Secretory Structures and Their Relationship to Accumulation of Camptothecin in Camptotheca acuminata (Nyssaceae). Acta Botanica Sinica 46:1242Google Scholar
  36. Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19CrossRefPubMedGoogle Scholar
  37. Wright CM, van der Merwe M, DeBrot AH, Bjornsti MA (2015) DNA topoisomerase I domain interactions impact enzyme activity and sensitivity to camptothecin. J Biol Chem 290:12068–12078CrossRefPubMedPubMedCentralGoogle Scholar
  38. Zachowski A, Guerbette F, Grosbois M, Jolliot-Croquin A, Kader JC (1998) Characterisation of acyl binding by a plant lipid-transfer protein. Eur J Biochem 257:443–448CrossRefPubMedGoogle Scholar
  39. Zhao C, Li C, Wang L, Zu Y, Yang L (2010) Determination of camptothecin and 10-hydroxycamptothecin in camptotheca acuminata by lc-esi-ms/ms. Anal Lett 43:2681–2693CrossRefGoogle Scholar
  40. Zoette V, Cuendet MA, Grossdidier A, Michielin O (2011) SwissParam, a fast force field generation tool for small organic molecules. J Comput Chem 32:2359–2368CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Nuria Cubells-Baeza
    • 1
    • 2
  • Cristina Gómez-Casado
    • 3
  • Leticia Tordesillas
    • 4
  • Carmen Ramírez-Castillejo
    • 1
    • 2
  • María Garrido-Arandia
    • 1
    • 2
  • Pablo González-Melendi
    • 1
    • 2
  • María Herrero
    • 5
  • Luis F. Pacios
    • 1
    • 6
  • Araceli Díaz-Perales
    • 1
    • 2
    Email author
  1. 1.Centre for Plant Biotechnology and Genomics (UPM-INIA)Pozuelo de Alarcón, MadridSpain
  2. 2.Department of Biotechnology-Plant BiologyETSIAAB, Technical University of MadridMadridSpain
  3. 3.Department of Experimental Medical SciencesLund UniversityLundSweden
  4. 4.Icahn School of Medicine at Mount SinaiNew YorkUSA
  5. 5.Estación Experimental de Aula Dei (CSIC)ZaragozaSpain
  6. 6.Department of Natural Systems and ResourcesETSI Montes, Technical University of MadridMadridSpain

Personalised recommendations