Skip to main content

The PPR protein SLOW GROWTH 4 is involved in editing of nad4 and affects the splicing of nad2 intron 1

Abstract

Key message

SLO4 is a mitochondrial PPR protein that is involved in editing nad4, possibly required for the efficient splicing of nad2 intron1.

Abstract

Pentatricopeptide repeat (PPR) proteins constitute a large protein family in flowering plants and are thought to be mostly involved in organellar RNA metabolism. The subgroup of PLS-type PPR proteins were found to be the main specificity factors of cytidine to uridine RNA editing. Identifying the targets of PLS-type PPR proteins can help in elucidating the molecular function of proteins encoded in the organellar genomes. In this study, plants lacking the SLOW GROWTH 4 PPR protein were characterized. Slo4 mutants were characterized as having restricted root growth, being late flowering and displaying an overall delayed growth phenotype. Protein levels and activity of mitochondrial complex I were decreased and putative complex I assembly intermediates accumulated in the mutant plants. An editing defect, leading to an amino acid change, in the mitochondrial nad4 transcript, encoding for a complex I subunit, was identified. Furthermore, the splicing efficiency of the first intron of nad2, encoding for another complex I subunit, was also decreased. The change in splicing efficiency could however not be linked to any editing defects in the nad2 transcript.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R et al (2003) Genome-Wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  2. Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S (2002) Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 18:298–305

    CAS  Article  PubMed  Google Scholar 

  3. Baradaran R, Berrisford JM, Minhas GS, Sazanov LA (2013) Crystal structure of the entire respiratory complex I. Nature 494:443–448

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Barkan A, Small I (2014) Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol 65:415–442

    CAS  Article  PubMed  Google Scholar 

  5. Barkan A, Rojas M, Fujii S, Yap A, Chong YS, Bond CS, Small I (2012) A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins. PLoS Genet 8:e1002910

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Bentolila S, Oh J, Hanson MR, Bukowski R (2013) Comprehensive high-resolution analysis of the role of an Arabidopsis gene family in RNA editing. PLoS Genet 9:e1003584

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Bonen L (2008) Cis- and trans-splicing of group II introns in plant mitochondria. Mitochondrion 8:26–34

    CAS  Article  PubMed  Google Scholar 

  8. Bosco CD, Lezhneva L, Biehl A, Leister D, Strotmann H, Wanner G, Meurer J (2004) Inactivation of the chloroplast ATP synthase γ subunit results in high non-photochemical fluorescence quenching and altered nuclear gene expression in Arabidopsis thaliana. J Biol Chem 279:1060–1069

    Article  Google Scholar 

  9. Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Görlach J (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Braun H-P, Binder S, Brennicke A, Eubel H, Fernie AR, Finkemeier I, Klodmann J, König A-C, Kühn K, Meyer E et al (2014) The life of plant mitochondrial complex I. Mitochondrion 19(Part B):295–313

    CAS  Article  PubMed  Google Scholar 

  11. Brown GG, Colas des Francs-Small C, Ostersetzer-Biran O (2014) Group II intron splicing factors in plant mitochondria. Front Plant Sci 5:35

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cardol P, Matagne RF, Remacle C (2002) Impact of mutations affecting ND mitochondria-encoded subunits on the activity and assembly of complex I in Chlamydomonas. Implication for the structural organization of the enzyme. J Mol Biol 319:1211–1221

    CAS  Article  PubMed  Google Scholar 

  13. Cardol P, Boutaffala L, Memmi S, Devreese B, Matagne RF, Remacle C (2008) In Chlamydomonas, the loss of ND5 subunit prevents the assembly of whole mitochondrial complex I and leads to the formation of a low abundant 700 kDa subcomplex. Biochim Biophys Acta 1777:388–396

    CAS  Article  PubMed  Google Scholar 

  14. Carrie C, Giraud E, Duncan O, Xu L, Wang Y, Huang S, Clifton R, Murcha M, Filipovska A, Rackham O et al (2010) Conserved and novel functions for Arabidopsis thaliana MIA40 in assembly of proteins in mitochondria and peroxisomes. J Biol Chem 285:36138–36148

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Colcombet J, Lopez-Obando M, Heurtevin L, Bernard C, Martin K, Berthomé R, Lurin C (2013) Systematic study of subcellular localization of Arabidopsis PPR proteins confirms a massive targeting to organelles. RNA Biol 10:1557–1575

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. de Longevialle AF, Meyer EH, Andrés C, Taylor NL, Lurin C, Millar AH, Small ID (2007) The pentatricopeptide repeat gene OTP43 is required for trans-splicing of the mitochondrial nad1 Intron 1 in Arabidopsis thaliana. Plant Cell 19:3256–3265

    Article  PubMed  PubMed Central  Google Scholar 

  17. des Francs-Small CC, Falcon de Longevialle A, Li Y, Lowe E, Tanz SK, Smith C, Bevan MW, Small I (2014) The Pentatricopeptide Repeat proteins TANG2 and ORGANELLE TRANSCRIPT PROCESSING439 are involved in the splicing of the multipartite nad5 transcript encoding a subunit of mitochondrial complex I1[W][OPEN]. Plant Physiol 165:1409–1416

    CAS  Article  Google Scholar 

  18. Doniwa Y, Ueda M, Ueta M, Wada A, Kadowaki K, Tsutsumi N (2010) The involvement of a PPR protein of the P subfamily in partial RNA editing of an Arabidopsis mitochondrial transcript. Gene 454:39–46

    CAS  Article  PubMed  Google Scholar 

  19. Duncan O, Carrie C, Wang Y, Murcha MW (2015) In vitro and in vivo protein uptake studies in plant mitochondria. Methods Mol Biol 1305:61–81

    CAS  Article  PubMed  Google Scholar 

  20. Elthon TE, Nickels RL, McIntosh L (1989) Monoclonal antibodies to the alternative oxidase of higher plant mitochondria. Plant Physiol 89:1311–1317

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Eubel H, Millar AH (2009) Systematic Monitoring of protein complex composition and abundance by blue-native PAGE. Cold Spring Harb Protoc 2009:pdb.prot5221

    Article  PubMed  Google Scholar 

  22. Eubel H, Jänsch L, Braun H-P (2003) New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of complex II. Plant Physiol 133:274–286

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Francs-Small des CC, Kroeger T, Zmudjak M, Ostersetzer-Biran O, Rahimi N, Small I, Barkan A (2012) A PORR domain protein required for rpl2 and ccmF(C) intron splicing and for the biogenesis of c-type cytochromes in Arabidopsis mitochondria. Plant J Cell Mol Biol 69:996–1005

    Article  Google Scholar 

  24. Fujii S, Small I (2011) The evolution of RNA editing and pentatricopeptide repeat genes. New Phytol 191:37–47

    CAS  Article  PubMed  Google Scholar 

  25. Garmier M, Carroll AJ, Delannoy E, Vallet C, Day DA, Small ID, Millar AH (2008) Complex I dysfunction redirects cellular and mitochondrial metabolism in Arabidopsis. Plant Physiol 148:1324–1341

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Gualberto JM, Le Ret M, Beator B, Kühn K (2015) The RAD52-like protein ODB1 is required for the efficient excision of two mitochondrial introns spliced via first-step hydrolysis. Nucleic Acids Res 43:6500–6510

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Haïli N, Arnal N, Quadrado M, Amiar S, Tcherkez G, Dahan J, Briozzo P, Colas des Francs-Small C, Vrielynck N, Mireau H (2013) The pentatricopeptide repeat MTSF1 protein stabilizes the nad4 mRNA in Arabidopsis mitochondria. Nucleic Acids Res 41:6650–6663

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hammani K, Giegé P (2014) RNA metabolism in plant mitochondria. Trends Plant Sci 19:380–389

    CAS  Article  PubMed  Google Scholar 

  29. He J, Duan Y, Hua D, Fan G, Wang L, Liu Y, Chen Z, Han L, Qu L-J, Gong Z (2012) DEXH Box RNA Helicase–mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between Abscisic acid and Auxin signaling [C][W][OA]. Plant Cell 24:1815–1833

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Hölzle A, Jonietz C, Törjek O, Altmann T, Binder S, Forner J (2011) A RESTORER OF FERTILITY-like PPR gene is required for 5′-end processing of the nad4 mRNA in mitochondria of Arabidopsis thaliana. Plant J Cell Mol Biol 65:737–744

    Article  Google Scholar 

  31. Hsieh W-Y, Liao J-C, Chang C-Y, Harrison T, Boucher C, Hsieh M-H (2015) The SLOW GROWTH3 pentatricopeptide repeat protein is required for the splicing of mitochondrial NADH dehydrogenase subunit 7 Intron 2 in Arabidopsis. Plant Physiol 168:490–501

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Jacoby RP, Li L, Huang S, Pong Lee C, Millar AH, Taylor NL (2012) Mitochondrial composition, function and stress response in plants. J Integr Plant Biol 54:887–906

    CAS  PubMed  Google Scholar 

  33. Juszczuk IM, Rychter AM (2009) BN-PAGE analysis of the respiratory chain complexes in mitochondria of cucumber MSC16 mutant. Plant Physiol Biochem 47:397–406

    CAS  Article  PubMed  Google Scholar 

  34. Juszczuk IM, Flexas J, Szal B, Dabrowska Z, Ribas-Carbo M, Rychter AM (2007) Effect of mitochondrial genome rearrangement on respiratory activity, photosynthesis, photorespiration and energy status of MSC16 cucumber (Cucumis sativus) mutant. Physiol Plant 131:527–541

    CAS  Article  PubMed  Google Scholar 

  35. Juszczuk IM, Szal B, Rychter AM (2012) Oxidation–reduction and reactive oxygen species homeostasis in mutant plants with respiratory chain complex I dysfunction. Plant Cell Environ 35:296–307

    CAS  Article  PubMed  Google Scholar 

  36. Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    CAS  Article  PubMed  Google Scholar 

  37. Karpova OV, Newton KJ (1999) A partially assembled complex I in NAD4-deficient mitochondria of maize. Plant J 17:511–521

    CAS  Article  Google Scholar 

  38. Keren I, Bezawork-Geleta A, Kolton M, Maayan I, Belausov E, Levy M, Mett A, Gidoni D, Shaya F, Ostersetzer-Biran O (2009) AtnMat2, a nuclear-encoded maturase required for splicing of group-II introns in Arabidopsis mitochondria. RNA 15:2299–2311

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Keren I, Tal L, des Francs-Small CC, Araújo WL, Shevtsov S, Shaya F, Fernie AR, Small I, Ostersetzer-Biran O (2012) nMAT1, a nuclear-encoded maturase involved in the trans-splicing of nad1 intron 1, is essential for mitochondrial complex I assembly and function. Plant J Cell Mol Biol 71:413–426

    CAS  Google Scholar 

  40. Köhler D, Schmidt-Gattung S, Binder S (2009) The DEAD-box protein PMH2 is required for efficient group II intron splicing in mitochondria of Arabidopsis thaliana. Plant Mol Biol 72:459–467

    Article  PubMed  Google Scholar 

  41. Koop HU, Steinmuller K, Wagner H, Rossler C, Eibl C, Sacher L (1996) Integration of foreign sequences into the tobacco plastome via polyethylene glycol-mediated protoplast transformation. Planta 199:193–201

    CAS  Article  PubMed  Google Scholar 

  42. Koprivova A, Francs-Small des CC, Calder G, Mugford ST, Tanz S, Lee B-R, Zechmann B, Small I, Kopriva S (2010) Identification of a pentatricopeptide repeat protein implicated in splicing of Intron 1 of mitochondrial nad7 transcripts. J Biol Chem 285:32192–32199

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Lee CP, Taylor NL, Millar AH (2013) Recent advances in the composition and heterogeneity of the Arabidopsis mitochondrial proteome. Front Plant Sci 4:4

    PubMed  PubMed Central  Google Scholar 

  44. Leu K-C, Hsieh M-H, Wang H-J, Hsieh H-L, Jauh G-Y (2016) Distinct role of Arabidopsis mitochondrial P-type pentatricopeptide repeat protein-modulating editing protein, PPME, in nad1 RNA editing. RNA Biol 13:593–604

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lister R, Carrie C, Duncan O, Ho LHM, Howell KA, Murcha MW, Whelan J (2007) Functional definition of outer membrane proteins involved in preprotein import into mitochondria. Plant Cell 19:3739–3759

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Meyer EH, Solheim C, Tanz SK, Bonnard G, Millar AH (2011) Insights into the composition and assembly of the membrane arm of plant complex I through analysis of subcomplexes in Arabidopsis mutant lines. J Biol Chem 286:26081–26092

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Murcha MW, Millar AH, Whelan J (2005) The N-terminal cleavable extension of plant carrier proteins is responsible for efficient insertion into the inner mitochondrial membrane. J Mol Biol 351:16–25

    CAS  Article  PubMed  Google Scholar 

  48. Nakagawa N, Sakurai N (2006) A mutation in At-nMat1a, which encodes a nuclear gene having high similarity to group II intron maturase, causes impaired splicing of mitochondrial NAD4 transcript and altered carbon metabolism in Arabidopsis thaliana. Plant Cell Physiol 47:772–783

    CAS  Article  PubMed  Google Scholar 

  49. Perales M, Parisi G, Fornasari MS, Colaneri A, Villarreal F, González-Schain N, Echave J, Gómez-Casati D, Braun H-P, Araya A et al (2004) Gamma carbonic anhydrase like complex interact with plant mitochondrial complex I. Plant Mol Biol 56:947–957

    CAS  Article  PubMed  Google Scholar 

  50. Pfalz J, Liere K, Kandlbinder A, Dietz K-J, Oelmüller R (2006) pTAC2, -6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 18:176–197

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Pineau B, Layoune O, Danon A, De Paepe R (2008) l-galactono-1,4-lactone dehydrogenase is required for the accumulation of plant respiratory complex I. J Biol Chem 283:32500–32505

    CAS  Article  PubMed  Google Scholar 

  52. Prikryl J, Rojas M, Schuster G, Barkan A (2011) Mechanism of RNA stabilization and translational activation by a pentatricopeptide repeat protein. Proc Natl Acad Sci 108:415–420

    CAS  Article  PubMed  Google Scholar 

  53. Rivals E, Bruyère C, Toffano-Nioche C, Lecharny A (2006) Formation of the Arabidopsis pentatricopeptide repeat family. Plant Physiol 141:825–839

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Sabar M, De Paepe R, de Kouchkovsky Y (2000) Complex I impairment, respiratory compensations, and photosynthetic decrease in nuclear and mitochondrial male sterile mutants of Nicotiana sylvestris. Plant Physiol 124:1239–1250

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Schertl P, Braun H-P (2015) Activity measurements of mitochondrial enzymes in native gels. Method Mol Biol Clifton NJ 1305:131–138

    CAS  Article  Google Scholar 

  56. Schimmeyer J, Bock R, Meyer EH (2016) l-Galactono-1,4-lactone dehydrogenase is an assembly factor of the membrane arm of mitochondrial complex I in Arabidopsis. Plant Mol Biol 90:117–126

    CAS  Article  PubMed  Google Scholar 

  57. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    CAS  Article  PubMed  Google Scholar 

  58. Scholl RL, May ST, Ware DH (2000) Seed and molecular resources for Arabidopsis. Plant Physiol 124:1477–1480

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Schweiger R, Muller NC, Schmitt MJ, Soll J, Schwenkert S (2012) AtTPR7 is a chaperone-docking protein of the Sec translocon in Arabidopsis. J Cell Sci 125:5196–5207

    CAS  Article  PubMed  Google Scholar 

  60. Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C et al (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Shikanai T (2015) RNA editing in plants: machinery and flexibility of site recognition. Biochim Biophys Acta 1847:779–785

    CAS  Article  PubMed  Google Scholar 

  62. Soole KL, Menz RI (1995) Functional molecular aspects of the NADH dehydrogenases of plant mitochondria. J Bioenerg Biomembr 27:397–406

    CAS  Article  PubMed  Google Scholar 

  63. Sung T-Y, Tseng C-C, Hsieh M-H (2010) The SLO1 PPR protein is required for RNA editing at multiple sites with similar upstream sequences in Arabidopsis mitochondria. Plant J Cell Mol Biol 63:499–511

    CAS  Article  Google Scholar 

  64. Takenaka M, Zehrmann A, Brennicke A, Graichen K (2013) Improved computational target site prediction for pentatricopeptide repeat RNA editing factors. PloS One 8:e65343

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Takenaka M, Verbitskiy D, Zehrmann A, Härtel B, Bayer-Császár E, Glass F, Brennicke A (2014) RNA editing in plant mitochondria—connecting RNA target sequences and acting proteins. Mitochondrion 19(Pt B):191–197

    CAS  Article  PubMed  Google Scholar 

  66. Tanz SK, Castleden I, Hooper CM, Vacher M, Small I, Millar HA (2013) SUBA3: a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis. Nucleic Acids Res 41:D1185–D1191

    CAS  Article  PubMed  Google Scholar 

  67. Vidal G, Ribas-Carbo M, Garmier M, Dubertret G, Rasmusson AG, Mathieu C, Foyer CH, De Paepe R (2007) Lack of respiratory chain complex I impairs alternative oxidase engagement and modulates redox signaling during elicitor-induced cell death in tobacco. Plant Cell 19:640–655

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Whelan J, Hugosson M, Glaser E, Day DA (1995) Studies on the import and processing of the alternative oxidase precursor by isolated soybean mitochondria. Plant Mol Biol 27:769–778

    CAS  Article  PubMed  Google Scholar 

  69. Williams-Carrier R, Kroeger T, Barkan A (2008) Sequence-specific binding of a chloroplast pentatricopeptide repeat protein to its native group II intron ligand. RNA 14:1930–1941

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Xie T, Chen D, Wu J, Huang X, Wang Y, Tang K, Li J, Sun M, Peng X (2016) Growing Slowly 1 locus encodes a PLS-type PPR protein required for RNA editing and plant development in Arabidopsis. J Exp Bot 67:5687–5698

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Zehrmann A, Verbitskiy D, van der Merwe JA, Brennicke A, Takenaka M (2009) A DYW domain-containing pentatricopeptide repeat protein is required for RNA editing at multiple sites in mitochondria of Arabidopsis thaliana. Plant Cell 21:558–567

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Zhu Q, Meyer EH, Van Der Straeten D (2012) Functional analysis of SLO2 provides new insight into the role of plant PPR proteins. Plant Signal Behav 7:1209–1211

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Zmudjak M, Colas des Francs-Small C, Keren I, Shaya F, Belausov E, Small I, Ostersetzer-Biran O (2013) mCSF1, a nucleus-encoded CRM protein required for the processing of many mitochondrial introns, is involved in the biogenesis of respiratory complexes I and IV in Arabidopsis. New Phytol 199:379–394

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Ian Small from the University of Western Australia for assisting with prediction of PPR binding sites. This work was supported by the Deutsche Forschungsgemeinschaft.

Author contributions

SW and CC carried out all experimental work. SW, JS and CC were all involved in planning and designing experiments and all authors contributed to the writing of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chris Carrie.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest. None of the research presented here involved human participants or animals.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weißenberger, S., Soll, J. & Carrie, C. The PPR protein SLOW GROWTH 4 is involved in editing of nad4 and affects the splicing of nad2 intron 1. Plant Mol Biol 93, 355–368 (2017). https://doi.org/10.1007/s11103-016-0566-4

Download citation

Keywords

  • Mitochondria
  • Complex I
  • RNA editing
  • Splicing
  • Pentatricopeptide repeat