Skip to main content

Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype

Abstract

Key message

This manuscript reports the identification and characterization of five transcription factors binding to the promoter of OsNHX1 in a salt stress tolerant rice genotype (Hasawi). Although NHX1 encoding genes are known to be highly regulated at the transcription level by different abiotic stresses, namely salt and drought stress, until now only one transcription factor (TF) binding to its promoter has been reported. In order to unveil the TFs regulating NHX1 gene expression, which is known to be highly induced under salt stress, we have used a Y1H system to screen a salt induced rice cDNA expression library from Hasawi. This approach allowed us to identify five TFs belonging to three distinct TF families: one TCP (OsPCF2), one CPP (OsCPP5) and three NIN-like (OsNIN-like2, OsNIN-like3 and OsNIN-like4) binding to the OsNHX1 gene promoter. We have also shown that these TFs act either as transcriptional activators (OsPCF2, OsNIN-like4) or repressors (OsCPP5, OsNIN-like2) and their encoding genes are differentially regulated by salt and PEG-induced drought stress in two rice genotypes, Nipponbare (salt-sensitive) and Hasawi (salt-tolerant). The transactivation activity of OsNIN-like3 was not possible to determine. Increased soil salinity has a direct impact on the reduction of plant growth and crop yield and it is therefore fundamental to understand the molecular mechanisms underlying gene expression regulation under adverse environmental conditions.

Abstract

OsNHX1 is the most abundant K+-Na+/H+ antiporter localized in the tonoplast and its gene expression is induced by salt, drought and ABA. To investigate how OsNHX1 is transcriptionally regulated in response to salt stress in a salt-tolerant rice genotype (Hasawi), a salt-stress-induced cDNA expression library was constructed and subsequently screened using the yeast one-hybrid system and the OsNHX1 promoter as bait. Five transcription factors (TFs) belonging to three distinct TF families: one TCP (OsPCF2), one CPP (OsCPP5) and three NIN-like (OsNIN-like2, OsNIN-like3 and OsNIN-like4) were identified as binding to OsNHX1 promoter. Transactivation activity assays performed in Arabidopsis and rice protoplasts showed that OsPCF2 and OsNIN-like4 are activators of the OsNHX1 gene expression, while OsCPP5 and OsNIN-like2 act as repressors. The transactivation activity of OsNIN-like3 needs to be further investigated. Gene expression studies showed that OsNHX1 transcript level is highly induced by salt and PEG-induced drought stress in both shoots and roots in both Nipponbare and Hasawi rice genotypes. Nevertheless, OsNHX1 seems to play a particular role in shoots in response to drought. Most of the TFs binding to OsNHX1 promoter showed a modest transcriptional regulation under stress conditions, however, in response to most of the conditions studied, the OsPCF2 was induced earlier than OsNHX1, indicating that OsPCF2 may activate OsNHX1 gene expression. In addition, although the OsNHX1 response to salt and PEG-induced drought stress in either shoots or roots was quite similar in both rice genotypes, the expression of OsPCF2 in roots under salt stress and the OsNIN-like4 in roots subjected to PEG was mainly up-regulated in Hasawi, indicating that these TFs may be associated with the salt and drought stress tolerance observed for this genotype.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Adler G, Blumwald E, Bar-Zvi D (2010) The sugar beet gene encoding the sodium/proton exchanger 1 (BvNHX1) is regulated by a MYB transcription factor. Planta 232:187–195. doi:10.1007/s00425-010-1160-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Almeida DM, Almadanim MC, Lourenço T, Abreu IA, Saibo NJ, Oliveira MM (2016) Screening for abiotic stress tolerance in rice: salt, cold and drought. In: P Duque (ed) Environmental responses in plants, methods in molecular biology. Springer, New York. doi:10.1007/978-1-4939-3356-3_14

    Google Scholar 

  • Andrés Z, Perez-Hormaeche J, Leidi EO, Schlucking K, Steinhorst L, McLachlan DH, Schumacher K, Hetherington AM, Kudla J, Cubero B, Pardo JM (2014) Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. Proc Natl Acad Sci USA 111:E1806–E1814. DOI:10.1073/pnas.1320421111

    Article  PubMed  PubMed Central  Google Scholar 

  • Anthony RG, Henriques R, Helfer A, Meszaros T, Rios G, Testerink C, Munnik T, Deak M, Koncz C, Bogre L (2004) A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO J 23:572–581. DOI:10.1038/sj.emboj.7600068

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Apse MP, Sottosanto JB, Blumwald E (2003) Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J 36:229–239. DOI:10.1046/j.1365-313X.2003.01871.x

    CAS  Article  PubMed  Google Scholar 

  • Barragán V, Leidi EO, Andrés Z, Rubio L, De Luca A, Fernández JA, Cubero B, Pardo JM (2012) Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24:1127–1142. doi:10.1105/tpc.111.095273

    Article  PubMed  PubMed Central  Google Scholar 

  • Bassil E, Blumwald E (2014) The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters. Curr Opin Plant Biol 22:1–6. DOI:10.1016/j.pbi.2014.08.002

    CAS  Article  PubMed  Google Scholar 

  • Bassil E, Tajima H, Liang YC, Ohto MA, Ushijima K, Nakano R, Esumi T, Coku A, Belmonte M, Blumwald E (2011a) The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell 23:3482–3497. DOI:10.1105/tpc.111.089581

  • Bassil E, Ohto MA, Esumi T, Tajima H, Zhu Z, Cagnac O, Belmonte M, Peleg Z, Yamaguchi T, Blumwald E (2011b) The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. Plant Cell 23:224–239. DOI:10.1105/tpc.110.079426

  • Bassil E, Coku A, Blumwald E (2012) Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development. J Exp Bot 63:5727–5740. DOI:10.1093/jxb/ers250

    CAS  Article  PubMed  Google Scholar 

  • Castaings L, Camargo A, Pocholle D, Gaudon V, Texier Y, Boutet-Mercey S, Taconnat L, Renou JP, Daniel-Vedele F, Fernández E, Meyer C, Krapp A (2009) The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. Plant J 57:426–435. DOI:10.1111/j.1365-313X.2008.03695.x

    CAS  Article  PubMed  Google Scholar 

  • Castaings L, Marchive C, Meyer C, Krapp A (2011) Nitrogen signalling in Arabidopsis: how to obtain insights into a complex signalling network. J Exp Bot 62:1391–1397. DOI:10.1093/jxb/erq375

    CAS  Article  PubMed  Google Scholar 

  • Cubas P, Lauter N, Doebley J, Coen E (1999) The TCP domain: a motif found in proteins regulating plant growth and development. Plant J 18:215–222

    CAS  Article  PubMed  Google Scholar 

  • Cvitanich C, Pallisgaard N, Nielsen KA, Hansen AC, Larsen K, Pihakaski-Maunsbach K, Marcker KA, Jensen EO (2000) CPP1, a DNA-binding protein involved in the expression of a soybean leghemoglobin c3 gene. Proc Natl Acad Sci USA 97:8163–8168. DOI:10.1073/pnas.090468497

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Degenkolbe T, Do PT, Zuther E, Repsilber D, Walther D, Hincha DK, Köhl KI (2009) Expression profiling of rice cultivars differing in their tolerance to long-term drought stress. Plant Mol Biol 2:133–153. doi:10.1007/s11103-008-9412-7

    Article  Google Scholar 

  • Djanaguiraman M, Prasad P.V.V. (2012) Effects of salinity on ion transport, water relations and oxidative damage. In: Springer-Verlag New, York Inc. (eds) Ecophysiology and responses of plants under salt stress. Springer, New York

    Google Scholar 

  • Fedorova E, Zink D (2008) Nuclear architecture and gene regulation. Biochim Biophys Acta 1783:2174–2184. doi:10.1016/j.bbamcr.2008.07.018

  • Ferdose J, Kawasaki M, Taniguchi M, Miyake H (2009) Differential sensitivity of rice cultivars to salinity and its relation to ion accumulation and root tip structure. Plant Prod Sci 4:453–461. doi:10.1626/pps.12.453

    Article  Google Scholar 

  • Figueiredo DD, Barros PM, Cordeiro AM, Serra TS, Lourenço T, Chander S, Oliveira MM, Saibo NJ (2012) Seven zinc-finger transcription factors are novel regulators of the stress responsive gene OsDREB1B. J Exp Bot 63:3643–3656. doi:10.1093/jxb/ers035

    CAS  Article  PubMed  Google Scholar 

  • Fukuda A, Nakamura A, Tanaka Y (1999) Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochim Biophys Acta 1446:149–155. doi:10.1016/S0167-4781(99)00065-2

    CAS  Article  PubMed  Google Scholar 

  • Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y (2011) Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta 233:175–188. doi:10.1007/s00425-010-1289-4

    CAS  Article  PubMed  Google Scholar 

  • Gao J-P, Chao D-Y, Lin H-X (2007) Understanding abiotic stress tolerance mechanisms: Recent studies on stress response in rice. J Integr Plant Biol 49:742–750. doi:10.1111/j.1744-7909.2007.00495.x

    CAS  Article  Google Scholar 

  • Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL, Fink GR (1999) The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci USA 96:1480–1485. DOI:10.1073/pnas.96.4.1480

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Gong Q, Li P, Ma S, Indu RS, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 445:826–839. doi:10.1111/j.1365-313X.2005.02587.x

    Article  Google Scholar 

  • Gregorio GB, Senadhira D, Mendoza RD (1997) Screening rice for salinity tolerance. IRRI Discussion Paper Series No. 22

  • Gregorio GB, Senadhira D, Mendoza RD, Manigbas NL, Roxas JP, Guerta CQ (2002) Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crops Res 76:91–101. doi:10.1016/S0378-4290(02)00031-X

    Article  Google Scholar 

  • Hamada A, Shono M, Xia T, Ohta M, Hayashi Y, Tanaka A, Hayakawa T (2001) Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini. Plant Mol Biol 46:35–42. doi:10.1023/A:1010603222673

    CAS  Article  PubMed  Google Scholar 

  • Hauser B, He J, SO P, Gasser C (2000) TSO1 is a novel protein that modulates cytokinesis and cell expansion in Arabidopsis. Development 127:2219–26

    CAS  PubMed  Google Scholar 

  • Jiang X, Leidi EO, Pardo JM (2010) How do vacuolar NHX exchangers function in plant salt tolerance? Plant Signal Behav. doi:10.4161/psb.5.7.11767

    Google Scholar 

  • Jin J, Zhang H, Kong L, Gao G, Luo J (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42:D1182–D1187. doi:10.1093/nar/gkt1016

    CAS  Article  PubMed  Google Scholar 

  • Konishi M, Yanagisawa S (2011) Roles of the transcriptional regulation mediated by the nitrate-responsive cis-element in higher plants. Biochem Biophys Res Commun 411:708–713. doi:10.1016/j.bbrc.2011.07.008

    CAS  Article  PubMed  Google Scholar 

  • Konishi M, Yanagisawa S (2013) Arabidopsis NIN-like transcription factors have a central role in nitrate signalling. Nat Commun. doi:10.1038/ncomms2621

    PubMed Central  Google Scholar 

  • Kosugi S, Ohashi Y (1997) PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell 9:1607–1619. doi:10.1105/tpc.9.9.1607

    Article  Google Scholar 

  • Kosugi S, Ohashi Y (2002) DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J 30:337–348. doi:10.1046/j.1365-313X.2002.01294.x

    CAS  Article  PubMed  Google Scholar 

  • Kosugi S, Hasebe M, Tomita M, Yanagawa H (2009) Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Natl Acad Sci USA 106:10171–10176. DOI:10.1073/pnas.0900604106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Kumari S, Sabharwal VP, Kushwaha HR, Sopory SK, Singla-Pareek SL, Pareek A (2009) Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L. Funct Integr Genomics 9:109–123. doi:10.1007/s10142-008-0088-5

    CAS  Article  PubMed  Google Scholar 

  • Leidi EO, Barragán V, Rubio L, El-Hamdaoui A, Ruiz MT, Cubero B, Fernández JA, Bressan RA, Hasegawa PM, Quintero FJ, Pardo JM (2010) The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant J 61:495–506. doi:10.1111/j.1365-313X.2009.04073.x

    CAS  Article  PubMed  Google Scholar 

  • Li C, Potuschak T, Colon-Carmona A, Gutierrez RA, Doerner P (2005) Arabidopsis TCP20 links regulation of growth and cell division control pathways. Proc Natl Acad Sci USA 102:12978–12983. doi:10.1073/pnas.0504039102

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z., Running M.P., Meyerowitz E.M. (1997) TSO1 functions in cell division during Arabidopsis flower development. Development 124:665–72

    CAS  PubMed  Google Scholar 

  • Liu P, Yang G-D, Li H, Zheng C-C, Wu C-A (2010) Overexpression of NHX1 in transgenic Arabidopsis enhances photoprotection capacity in high salinity and drought conditions. Acta Physiol Plant 32:81–90. doi:10.1007/s11738-009-0383-3

    CAS  Article  Google Scholar 

  • Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y, Chu C, Wang X (2014) OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol 84:19–36. doi:10.1007/s11103-013-0115-3

    CAS  Article  PubMed  Google Scholar 

  • Maggio A, Zhu J-K, Hasegawa PM, Bressan RA (2006) Osmogenetics: Aristotle to Arabidopsis. Plant Cell 18:1542–1557. doi:10.1105/tpc.105.040501

  • Manassero NGU, Viola IL, Welchen E, Gonzalez DH (2013) TCP transcription factors: architecture of plants form. Biomol Concepts. 4:111–27. doi:10.1515/bmc-2012-0051

    CAS  Article  PubMed  Google Scholar 

  • Marchive C, Roudier F, Castaings L, Brehaut V, Blondet E, Colot V, Meyer C, Krapp A (2013) Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat Commun 4:1713. doi:10.1038/ncomms2650

    Article  PubMed  Google Scholar 

  • Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu J-K, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:2. doi:10.1104/pp.106.092635

    Google Scholar 

  • Michael G, André L (2002) Global impact of salinity and agricultural ecosystems. In: Läuchli A, Lüttge U (eds), Salinity: environment—plants—molecules. Kluwer Academic Publishers, Dodrecht, pp 3–20

    Google Scholar 

  • Mohammadi-Nejad G, Arzani A, Reza AM, Singh RK, Gregorio GB (2008) Assessment of rice genotypes for salt tolerance using microsatellite markers associated with the saltol QTL. Afr J Biotechnol 6:730–736

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911

    CAS  Article  PubMed  Google Scholar 

  • Negrão S, Almadanim MC, Pires IS, Abreu IA, Maroco J, Courtois B, Gregorio GB, McNally KL, Oliveira MM (2013) New allelic variants found in key rice salt-tolerance genes: an association study. Plant Biotechnol J 11:87–100. doi:10.1111/pbi.12010

    Article  PubMed  Google Scholar 

  • Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532:279–282. doi:10.1016/S0014-5793(02)03679-7

    CAS  Article  PubMed  Google Scholar 

  • Ouwerkerk P.B., Meijer A.H. (2001) Yeast one-hybrid screening for DNA–protein interactions. Curr Protoc Mol Biol Chap. doi:10.1002/0471142727.mb1212s55

    Google Scholar 

  • Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2007) The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res 35:D883–D887. doi:10.1093/nar/gkl976

    CAS  Article  PubMed  Google Scholar 

  • Pires IS, Negrão S, Oliveira MM, Purugganan MD (2015) Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress. Physiol Plant. doi:10.1111/ppl.12356

    PubMed  Google Scholar 

  • Reguera M, Bassil E, Tajima H, Wimmer M, Chanoca A, Otegui MS, Paris N, Blumwald E (2015) pH regulation by NHX-type antiporters is required for receptor-mediated protein trafficking to the vacuole in Arabidopsis. Plant Cell 27:1200–1217. doi:10.1105/tpc.114.135699

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Rosales MP, Galvez FJ, Huertas R, Aranda MN, Baghour M, Cagnac O, Venema K (2009) Plant NHX cation/proton antiporters. Plant Signal Behav 4:265–276

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124. doi:10.1016/j.copbio.2013.12.004

    CAS  Article  PubMed  Google Scholar 

  • Santos AP, Serra T, Figueiredo DD, Barros P, Lourenço T, Chander S, Oliveira MM, Saibo NJ (2011) Transcription regulation of abiotic stress responses in rice: a combined action of transcription factors and epigenetic mechanisms. OMICS 15:839–857. doi:10.1089/omi.2011.0095

    CAS  Article  PubMed  Google Scholar 

  • Schauser L, Roussis A, Stiller J, Stougaard J (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402:191–195. doi:10.1038/46058

    CAS  Article  PubMed  Google Scholar 

  • Schauser L, Wieloch W, Stougaard J (2005) Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus. J Mol Evol 60:229–237. doi:10.1007/s00239-004-0144-2

    CAS  Article  PubMed  Google Scholar 

  • Schmit F, Cremer S, Gaubatz S (2009) LIN54 is an essential core subunit of the DREAM/LINC complex that binds to the cdc2 promoter in a sequence-specific manner. FEBS J 219:5703–5716. doi:10.1111/j.1742-4658.2009.07261

    Article  Google Scholar 

  • Sorokin AV, Kim ER, Ovchinnikov LP (2007) Nucleocytoplasmic transport of proteins. BioChemistry 72:1439–1457. doi:10.1134/S0006297907130032

    CAS  PubMed  Google Scholar 

  • Sottosanto JB, Gelli A, Blumwald E (2004) DNA array analyses of Arabidopsis thaliana lacking a vacuolar Na+/H+ antiporter: impact of AtNHX1 on gene expression. Plant J 40:752–771. doi:10.1186/1471-2229-7-18

    CAS  Article  PubMed  Google Scholar 

  • Tavares B, Domingos P, Dias PN, Feijo JA, Bicho A (2011) The essential role of anionic transport in plant cells: the pollen tube as a case study. J Exp Bot 62:2273–2298. doi:10.1093/jxb/err036

    CAS  Article  PubMed  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X, Close TJ (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139:822–835. doi:10.1104/pp.105.065961

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Walia H, Wilson C, Zeng L, Ismail AM, Condamine P, Close TJ (2007) Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol 63:609–623. doi:10.1007/s11103-006-9112-0

    CAS  Article  PubMed  Google Scholar 

  • Xia T, Apse MP, Aharon GS, Blumwald E (2002) Identification and characterization of a NaCl-inducible vacuolar Na+/H + antiporter in Beta vulgaris. Physiol Plant 116:206–212. doi:10.1034/j.1399-3054.2002.1160210.x

    CAS  Article  PubMed  Google Scholar 

  • Xiao B-Z, Chen X, Xiang C-B, Tang N, Zhang Q-F, Xionga L-Z (2008) Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant 2:73–83. doi:10.1093/mp/ssn068

    Article  PubMed  PubMed Central  Google Scholar 

  • Xuea Z-Y, Zhia D-Y, Xueb G-P, Zhangc H, Zhaoc Y-X, Xiaa G-M (2004) Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859

    Article  Google Scholar 

  • Yang Z, Gu S, Wang X, Li W, Tang Z, Xu C (2008) Molecular evolution of the CPP-like gene family in plants: insights from comparative genomics of Arabidopsis and rice. J Mol Evol 67:266–277. doi:10.1007/s00239-008-9143-z

    CAS  Article  PubMed  Google Scholar 

  • Yao X, Ma H, Wang J, Zhang D (2007) Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa. J Integr Plant Biol 49:885–897. DOI:10.1111/j.1744-7909.2007.00509.x

    CAS  Article  Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539. doi:10.1046/j.1365-313X.2002.01309.x

    CAS  Article  PubMed  Google Scholar 

  • Yoshida S, Forno D, Cock J, Gomez K (1976) Laboratory manual for physiological studies of rice. Internationa Rice Research Instirute (IRRI), Manila

    Google Scholar 

  • Zhang H-X, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768. doi:10.1038/90824

    CAS  Article  PubMed  Google Scholar 

  • Zhang GH, Su Q, An LJ, Wu S (2008) Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus littoralis. Plant Physiol Biochem 462:117–126. doi:10.1016/j.plaphy.2007.10.022

    Article  Google Scholar 

  • Zhang T, Hu S, Zhang G, Pan L, Zhang X, Al-Mssallem IS, Yu J (2012) The organelle genomes of Hassawi rice (Oryza sativa L.) and its hybrid in saudi arabia: genome variation, rearrangement, and origins. PLOS ONE 7:e42041. doi:10.1371/journal.pone.0042041

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

DMA was financed by Fundação para a Ciência e Tecnologia (FCT) through the fellowship SFRH/BD/65229/2009. NS was supported by Programa Ciência 2007 and FCT Investigator, financed by POPH (QREN).

Funding

This work was funded by Research unit GREEN-it “Bioresources for Sustainability” (UID/Multi/04551/2013) and by FCT project PTDC/BIA_BCM/099836/2008.

Author contributions

D.M.A. performed all the experiments (rice treatments, cDNA library construction, Y1H screening, transctivation analysis, cellular localization, RT-qPCR), analyzed the data, and wrote the article. GG was involved in salt treatments and salt stress evaluation, GG, M.M.O. and N.J.M.S conceived the project and M.M.O. and N.J.M.S revised the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson J. M. Saibo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 539 KB)

Supplementary material 2 (PPTX 98 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Almeida, D.M., Gregorio, G.B., Oliveira, M.M. et al. Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype. Plant Mol Biol 93, 61–77 (2017). https://doi.org/10.1007/s11103-016-0547-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-016-0547-7

Keywords

  • Salt stress
  • Drought
  • NHX1
  • PCF2
  • CPP5
  • NIN-like