Skip to main content
Log in

Multiplicity and specificity of siderophore uptake in the cyanobacterium Anabaena sp. PCC 7120

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Many cyanobacteria secrete siderophores to sequester iron. Alternatively, mechanisms to utilize xenosiderophores have evolved. The overall uptake systems are comparable to that of other bacteria involving outer membrane transporters energized by TonB as well as plasma membrane-localized transporters. However, the function of the bioinformatically-inferred components is largely not established and recent studies showed a high diversity of the complexity of the uptake systems in different cyanobacteria. Thus, we approached the systems of the filamentous Anabaena sp. PCC 7120 as a model of a siderophore-secreting cyanobacterium. Anabaena sp. produces schizokinen and uptake of Fe-schizokinen involves the TonB-dependent transporter, schizokinen transporter (SchT), and the ABC-type transport system FhuBCD. We confirm that this system is also relevant for the uptake of structurally similar Fe-siderophore complexes like Fe-aerobactin. Moreover, we demonstrate a function of the TonB-dependent transporter IutA2 in Fe-schizokinen uptake in addition to SchT. The iutA2 mutant shows growth defects upon iron limitation, alterations in Fe-schizokinen uptake and in the transcription profile of the Fe-schizokinen uptake system. The physiological properties of the mutant confirm the importance of iron uptake for cellular function, e.g. for the Krebs cycle. Based on the relative relation of expression of schT and iutA2 as well as of the iron uptake rate to the degree of starvation, a model for the need of the co-existence of two different outer membrane transporters for the same substrate is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albrecht-Gary AM, Crumbliss AL (1998) Coordination chemistry of siderophores: thermodynamics and kinetics of iron chelation and release. Met Ions in Biol Syst 35:239–327

    CAS  Google Scholar 

  • Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    Article  CAS  PubMed  Google Scholar 

  • Bailey KM, Taub FB (1980) Effects of hydroxamate siderophores (strong Fe(III) chelators) on the growth of algae. J Phycol 16:334–339

    Article  CAS  Google Scholar 

  • Beale SI (1994) Biosynthesis of cyanobacterial tetrapyrrole pigments: hemes, chlorophylls, and phycobilins. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 519–558

    Chapter  Google Scholar 

  • Benz R (1994) Uptake of solutes through bacterial outer membranes. In: Ghuysen J-M, Hakenbeck R (eds) Bacterial cell wall. Elsevier, Amsterdam, pp 397–423

    Chapter  Google Scholar 

  • Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, Buesseler KO (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315:612–617

    Article  CAS  PubMed  Google Scholar 

  • Boyer GL, Gillam AH, Trick CG (1987) Iron chelation and uptake. In: Fay P, Van Baalen C. (eds) The cyanobacteria. Elsevier, New York, pp 415–436

    Google Scholar 

  • Brand LE (1991) Minimum iron requirements of marine phytoplankton and the implications for the biogeochemical control of new production. Limnol Oceangr 36:1756–1771

    Article  Google Scholar 

  • Braud A, Hannauer M, Mislin G, Schalk I (2009a) The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity. J Bacteriol 191:3517–3525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braud A, Hoegy F, Jezeque K, Lebeau T, Schalk I (2009b) New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine–iron uptake pathway. Environ Microbiol 11:1079–1091

    Article  CAS  PubMed  Google Scholar 

  • Braun V (1999) Active transport of siderophore-mimicking antibacterials across the outer membrane. Drug Resist Updat 6:363–369

    Article  Google Scholar 

  • Braun V, Burkhardt R, Schneider R, Zimmermann L (1982) Chromosomal genes for ColV plasmid-determined iron(III)-aerobactin transport in Escherichia coli. J Bacteriol 151:553–559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braun V, Günter K, Hantke K (1991) Transport of iron across the outer membrane. Biol Met 4:14–22

    Article  CAS  PubMed  Google Scholar 

  • Brock TD (1973) Evolutionary and ecological aspects of the cyanophytes. In: Carr NG, Whitton BA (eds) The biology of the blue-green algae. Blackwell, Oxford, pp 487–500

    Google Scholar 

  • Chu BC, Garcia-Herrero A, Johanson TH, Krewulak KD, Lau CK, Peacock RS, Slavinskaya Z, Vogel HJ (2010) Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. Biometals 23:601–611

    Article  CAS  PubMed  Google Scholar 

  • Clarke SE, Stuart J, Sanders-Loehr J (1987) Induction of siderophore activity in Anabaena spp. and moderation of copper toxicity. Appl Environ Microbiol 53:917–922

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dean CR, Neshat S, Poole K (1996) PfeR, an enterobactin-responsive activator of ferric enterobactin receptor gene expression in Pseudomonas aeruginosa. J Bacteriol 178:5361–5369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dhungana S, White PS, Crumbliss AL (2001) Crystal structure of ferrioxamine B: a comparative analysis and implications for molecular recognition. J Biol Inorg Chem 6:810–818

    Article  CAS  PubMed  Google Scholar 

  • Elhai J, Wolk CP (1988a) Conjugal transfer of DNA to cyanobacteria. Methods Enzymol 167:747–754

    Article  CAS  PubMed  Google Scholar 

  • Ferguson AD, Deisenhofer J (2002) TonB-dependent receptors-structural perspectives. Biochim Biophys Acta 1565:318–332

    Article  CAS  PubMed  Google Scholar 

  • Ferreira F, Strauss NA (1994) Iron deprivation in cyanobacteria. J Appl Phycol 6:199–210

    Article  CAS  Google Scholar 

  • Flint DH, Emptage MH, Guest JR (1992) Fumarase a from Escherichia coli: purification and characterization as an iron-sulfur cluster containing enzyme. Biochemistry 31:10331–10337

    Article  CAS  PubMed  Google Scholar 

  • Frías JE, Flores E, Herrero A (1997) Nitrate assimilation gene cluster from the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 179:477–486

    PubMed  PubMed Central  Google Scholar 

  • Goldmann SJ, Lammers PJ, Berman MS, Sanders-Loehr J (1983) Siderophore-mediated iron-uptake in different strains of Anabaena sp. J Bacteriol 156:1144–1150

    Google Scholar 

  • González A, Bes MT, Barja F, Peleato ML, Fillat MF (2010) Overexpression of FurA in Anabaena sp. PCC 7120 reveals new targets for this regulator involved in photosynthesis, iron uptake and cellular morphology. Plant Cell Physiol 51:1900–1914

    Article  PubMed  Google Scholar 

  • González A, Angarica VE, Sancho J, Fillat MF (2014) The FurA regulon in Anabaena sp. PCC 7120: in silico prediction and experimental validation of novel target genes. Nucleic Acids Res 42:4833–4846

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris WR, Carrano CJ, Raymond KN (1979) Coordination chemistry of microbial iron transport compounds. 16. Isolation, characterization and formation constants of ferric aerobactin. J Am Chem Soc 101:2722–2727

    Article  CAS  Google Scholar 

  • Iverson TM, Luna-Chavez C, Cecchini G, Rees DC (1999) Structure of the Escherichia coli fumarate reductase respiratory complex. Science 18:1961–1966

    Article  Google Scholar 

  • Katoh H, Hagino N, Ogawa T (2001) Iron-binding activity of FutA1 subunit of an ABC-type iron transporter in the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Cell Physiol 42:823–827

    Article  CAS  PubMed  Google Scholar 

  • Kranzler C, Lis H, Shaked Y, Keren N (2011) The role of reduction in iron uptake processes in a unicellular, planktonic cyanobacterium. Environ Microbiol 13:2990–2999

    Article  CAS  PubMed  Google Scholar 

  • Kranzler C, Lis H, Finkel OM, Schmetterer G, Shaked Y, Keren N (2014) Coordinated transporter activity shapes high-affinity iron acquisition in cyanobacteria. ISME J 8:409–417

    Article  CAS  PubMed  Google Scholar 

  • Krewulak KD, Vogel HJ (2008) Structural biology of bacterial iron uptake. Biochim Biophys Acta 1778:1781–1804

    Article  CAS  PubMed  Google Scholar 

  • Kustka A, Carpenter EJ, Sañudo-Wilhelmy SA (2002) Iron and marine nitrogen fixation: progress and future directions. Res Microbiol 153:255–262

    Article  CAS  PubMed  Google Scholar 

  • Lancaster CR, Kröger A, Auer M, Michel H (1999) Structure of fumarate reductase from Wolinella succinogenes at 2.2 A resolution. Nature 25:377–385

    Article  Google Scholar 

  • Lis H, Shaked Y, Kranzler C, Keren N, Morel FMM (2014) Iron bioavailability to phytoplankton: an empirical approach. ISME J 8:409–417

    Article  PubMed  Google Scholar 

  • Lis H, Kranzler C, Keren N, Shaked Y (2015) A Comparative study of iron uptake rates and mechanisms amongst marine and fresh water cyanobacteria: prevalence of reductive iron uptake. Life 5:841–860

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Gomollón S, Hernández JA, Wolk CP, Peleato ML, Fillat MF (2007a) Expression of furA is modulated by NtcA and strongly enhanced in heterocysts of Anabaena sp. PCC 7120. Microbiology 153:42–50

    Article  PubMed  Google Scholar 

  • López-Gomollón S, Hernández JA, Pellicer S, Angarica VE, Peleato ML, Fillat MF (2007b) Cross-talk between iron and nitrogen regulatory networks in Anabaena (Nostoc) sp. PCC 7120: identification of overlapping genes in FurA and NtcA regulons. J Mol Biol 374:267–281

    Article  PubMed  Google Scholar 

  • Martin JH, Gordon RM, Fitzwater SE (1991) The case for iron. Limnol Oceanogr 36:1793–1802

    Article  Google Scholar 

  • Mirus O, Strauss S, Nicolaisen K, von Haeseler A, Schleiff E (2009) TonB-dependent transporters and their occurrence in cyanobacteria. BMC Biol 7:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore J, Doney SC, Glover DM, Fung IY (2001) Iron cycling and nutrient-limitation patterns in surface waters of the world ocean. Limnol Oceangr 5:353–362

    Article  Google Scholar 

  • Moslavac S, Reisinger V, Berg M, Mirus O, Vosyka O, Ploscher M (2007) The proteome of the heterocyst cell wall in Anabaena sp. PCC 7120. Biol Chem 388:823–829

    Article  CAS  PubMed  Google Scholar 

  • Murphy TP, Lean DRS, Nalewajko C (1976) Blue-green algae: their excretion of iron selective chelators enables them to dominate other algae. Science 192:900–902

    Article  CAS  PubMed  Google Scholar 

  • Nagata T, Oobo T, Aozasa O (2013) Efficacy of a bacterial siderophore, pyoverdine, to supply iron to Solanum lycopersicum plants. J Biosci Bioeng 115:686–690

    Article  CAS  PubMed  Google Scholar 

  • Nicolaisen K, Moslavac S, Samborski A, Valdebenito M, Hantke K, Maldener I et al (2008) Alr0397 is an outer membrane transporter for the siderophore schizokinen in Anabaena sp. strain PCC 7120. J Bacteriol 190:7500–7507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolaisen K, Hahn A, Valdebenito M, Moslavac S, Samborski A, Maldener I (2010) The interplay between siderophore secretion and coupled iron and copper transport in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Biochim Biophys Acta 1798:2131–2140

    Article  CAS  PubMed  Google Scholar 

  • Noinaj N, Guillier M, Barnard TJ, Buchanan SK (2010) TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64:43–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paz-Yepes J, Merino-Puerto V, Herrero A, Flores E (2008) The amt gene cluster of the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 190:6534–6539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pernil R, Picossi S, Mariscal V, Herrero A, Flores E (2008) ABC-type amino acid uptake transporters Bgt and N-II of Anabaena sp. strain PCC 7120 share an ATPase subunit and are expressed in vegetative cells and heterocysts. Mol Microbiol 67:1067–1080

    Article  CAS  PubMed  Google Scholar 

  • Poole K, McKay GA (2003) Iron acquisition and its control in Pseudomonas aeruginosa: many roads to Rome. Front Biosci 8:661–686

    Article  Google Scholar 

  • Rabsch W, Winkelmann G (1991) The specificity of bacterial siderophore receptors probed by bioassays. Biol Met 4:244–250

    Article  CAS  PubMed  Google Scholar 

  • Raven JA (1990) Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and of c assimilation pathway. New Phytol 116:1–18

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanker RY (1979) Generic assignments, strain histories, and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Robbins AH, Stout CD (1989) The structure of aconitase. Proteins 5:289–312

    Article  CAS  PubMed  Google Scholar 

  • Rudolf M, Kranzler C, Lis H, Margulis K, Stevanovic M, Keren N, Schleiff E (2015) Multiple modes of iron uptake by the filamentous, siderophore-producing cyanobacterium, Anabaena sp. PCC 7120. Mol Microbiol 97:577–588

    Article  CAS  PubMed  Google Scholar 

  • Salomon E, Bar-Eyal L, Sharon S, Keren N (2013) Balancing photosynthetic electron flow is critical for cyanobacterial acclimation to nitrogen limitation. Biochim Biophys Acta 1827:340–347

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Extraction, purification, and analysis of messenger RNA from eukaryotic cells. Nolan C (ed) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Saxena RK, Pandey PK, Bisen PS (2002) Physiological and biochemical alterations in Anabaena 7120 under iron stress. Indian J Exp Biol 40:594–599

    CAS  PubMed  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Shcolnick S, Shaked Y, Keren N (2007) A role for mrgA, a DPS family protein, in the internal transport of Fe in the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta 1767:814–819

    Article  CAS  PubMed  Google Scholar 

  • Sheldon JR, Marolda CL, Heinrichs DE (2014) TCA cycle activity in Staphylococcus aureus is essential for iron-regulated synthesis of staphyloferrin A, but not staphyloferrin B: the benefit of a second citrate synthase. Mol Microbiol 92:824–839

    Article  CAS  PubMed  Google Scholar 

  • Simpson FB, Neiland JB (1976) Siderochromesin cyanophyceae: isolation and characterization of schizokinen from Anabaena sp. J Phycol 12:44–48

    Google Scholar 

  • Speziali CD, Dale SE, Henderson JA, Vinés ED, Heinrichs DE (2006) Requirement of Staphylococcus aureus ATP-binding cassette-ATPase FhuC for iron-restricted growth and evidence that it functions with more than one iron transporter. J Bacteriol 188:2048–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevanovic M, Hahn A, Nicolaisen K, Mirus O, Schleiff E (2012) The components of the putative iron transport system in the cyanobacterium Anabaena sp. PCC 7120. Environ Microbiol 7:1655–1670

    Article  Google Scholar 

  • Stevanovic M, Lehmann C, Schleiff E (2013) The response of the TonB-dependent transport network in Anabaena sp. PCC 7120 to cell density and metal availability. BioMetals 26:549–560

    Article  CAS  PubMed  Google Scholar 

  • Straus NA (1994) Iron deprivation: physiology and gene regulation. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 731–750

    Chapter  Google Scholar 

  • Vansuyt G, Robin A, Briat JF, Curie C, Lemanceau P (2007) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant Microbe Interact 20:441–447

    Article  CAS  PubMed  Google Scholar 

  • Wagegg W, Braun V (1981) Ferric citrate transport in Escherichia coli requires outer membrane receptor protein FecA. J Bacteriol 145:156–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wells ML, Price NM, Bruland KW (1995) Iron chemistry in seawater and its relationship to phytoplankton: a workshop report. Mar Chem 48:157–182

    Article  CAS  Google Scholar 

  • Wolk C, Vonshak A, Kehoe P, Elhai J (1984) Construction of shuttle vectors capable of conjugative transfer from Escherichia coli to nitrogen-fixing filamentous cyanobacteria. Microbiol 81:1561–1565

    CAS  Google Scholar 

  • Yingping F, Lemeille S, González A, Risoul V, Denis Y, Richaud P et al (2015) The Pkn22 Ser/Thr kinase in Nostoc PCC 7120: role of FurA and NtcA regulators and transcript profiling under nitrogen starvation and oxidative stress. BMC Genomics 16:557

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Bryant DA (2015) Biochemical validation of the glyoxylate cycle in the cyanobacterium Chlorogloeopsis fritschii strain PCC 9212. J Biol Chem 29:14019–14030

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (SCHL 585-6) to ES and by an Israeli Science Foundation grant (806/11) awarded to NK.

Author contributions

ES designed research; MR performed uptake experiments and mutant analysis; MR, MS and RP performed qRT-PCR; ES, MR, RP and NK analysed data; ES and MR wrote the manuscript; all authors were involved in final editing and all approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Schleiff.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest is attached to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 589 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudolf, M., Stevanovic, M., Kranzler, C. et al. Multiplicity and specificity of siderophore uptake in the cyanobacterium Anabaena sp. PCC 7120. Plant Mol Biol 92, 57–69 (2016). https://doi.org/10.1007/s11103-016-0495-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-016-0495-2

Keywords

Navigation