New features of desiccation tolerance in the lichen photobiont Trebouxia gelatinosa are revealed by a transcriptomic approach

Abstract

Trebouxia is the most common lichen-forming genus of aero-terrestrial green algae and all its species are desiccation tolerant (DT). The molecular bases of this remarkable adaptation are, however, still largely unknown. We applied a transcriptomic approach to a common member of the genus, T. gelatinosa, to investigate the alteration of gene expression occurring after dehydration and subsequent rehydration in comparison to cells kept constantly hydrated. We sequenced, de novo assembled and annotated the transcriptome of axenically cultured T. gelatinosa by using Illumina sequencing technology. We tracked the expression profiles of over 13,000 protein-coding transcripts. During the dehydration/rehydration cycle c. 92 % of the total protein-coding transcripts displayed a stable expression, suggesting that the desiccation tolerance of T. gelatinosa mostly relies on constitutive mechanisms. Dehydration and rehydration affected mainly the gene expression for components of the photosynthetic apparatus, the ROS-scavenging system, Heat Shock Proteins, aquaporins, expansins, and desiccation related proteins (DRPs), which are highly diversified in T. gelatinosa, whereas Late Embryogenesis Abundant Proteins were not affected. Only some of these phenomena were previously observed in other DT green algae, bryophytes and resurrection plants, other traits being distinctive of T. gelatinosa, and perhaps related to its symbiotic lifestyle. Finally, the phylogenetic inference extended to DRPs of other chlorophytes, embryophytes and bacteria clearly pointed out that DRPs of chlorophytes are not orthologous to those of embryophytes: some of them were likely acquired through horizontal gene transfer from extremophile bacteria which live in symbiosis within the lichen thallus.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 2:2104–2105

    Article  Google Scholar 

  2. Ahmadjian V (1973) Methods of isolation and culturing lichen symbionts and thalli. In: Ahmadjian V, Hale ME (eds) The Lichens. Academic Press, New York, pp 653–660

    Google Scholar 

  3. Ahmadjian V (2004) Trebouxia: reflections on a perplexing and controversial lichen photobiont. In: Seckbach J (ed) Symbiosis. Springer, Houten, pp 373–383

    Google Scholar 

  4. Alamillo J, Almoguera C, Bartels D, Jordano J (1995) Constitutive expression of small heat shock proteins in vegetative tissues of the resurrection plant Craterostigma plantagineum. Plant Mol Biol 29:1093–1099

    CAS  PubMed  Article  Google Scholar 

  5. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Article  Google Scholar 

  6. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25–29

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Aubert S, Juge C, Boisson AM, Gout E, Bligny R (2007) Metabolic processes sustaining the reviviscence of lichen Xanthoria elegans (Link) Th. Fr. in high mountain environments. Planta 226:1287–1297

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    CAS  Article  Google Scholar 

  9. Bartels D, Schneider K, Terstappen G, Piatkowski D, Salamini F (1990) Molecular cloning of abscisic acid-modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181:27–34

    CAS  PubMed  Article  Google Scholar 

  10. Bates ST, Cropsey GWG, Caporaso JG, Knight R, Fierer N (2011) Bacterial communities associated with the lichen symbiosis. Appl Environ Microbiol 77:1309–1314

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Battista JR, Park MJ, McLemore AE (2001) Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccation. Cryobiology 43:133–139

    CAS  PubMed  Article  Google Scholar 

  12. Beck A, Divakar PK, Zhang N, Molina MC, Struwe L (2014) Evidence of ancient horizontal gene transfer between fungi and the terrestrial alga Trebouxia. Org Divers Evol 15:235–248

    Article  Google Scholar 

  13. Becker B (2013) Snow ball earth and the split of Streptophyta and Chlorophyta. Trends Plant Sci 18:180–183

    CAS  PubMed  Article  Google Scholar 

  14. Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate: a practical and powerful approach to multiple testing. J R Stat Soc B Met 57:289–300

    Google Scholar 

  15. Bertuzzi S, Davies L, Power SA, Tretiach M (2013) Why lichens are bad biomonitors of ozone pollution? Ecol Indic 34:391–397

    CAS  Article  Google Scholar 

  16. Blanc G, Agarkova I, Grimwood J, Kuo A, Brueggeman A, Dunigan D, Gurnon J, Ladunga I, Lindquist E, Lucas S, Pangilinan J, Pröschold T, Salamov A, Schmutz J, Weeks D, Yamada T, Lomsadze A, Borodovsky M, Claverie JM, Grigoriev IV, Van Etten JL (2012) The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol 13:R39

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Briat JF, Ravet K, Arnaud N, Duc C, Boucherez J, Touraine B, Cellier F, Gaymard F (2010) New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann Bot 105:811–822

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Büdel B (2011) Cyanobacteria: habitats and species. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance, vol 215., Ecological StudiesSpringer, Heidelberg, pp 45–63

    Google Scholar 

  19. Candotto Carniel F, Zanelli D, Bertuzzi S, Tretiach M (2015) Desiccation tolerance and lichenization: a case study with the aeroterrestrial microalga Trebouxia sp. (Chlorophyta). Planta 242:493–505

    CAS  PubMed  Article  Google Scholar 

  20. Candotto Carniel F, Arc E, Craighero T, Fernández-Marín B, José Manuel Laza JM, Tretiach M, Kranner I (2016) Transition to the glassy state and molecular mobility in the lichen Flavoparmelia caperata (L.) Hale. 7th International Workshop on Desiccation Sensitivity and Tolerance across Life Forms, p 46

  21. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    CAS  PubMed  Article  Google Scholar 

  22. Collett H, Butowt R, Smith J, Farrant JM, Illing N (2003) Photosynthetic genes are differentially transcribed during the dehydration-rehydration cycle in the resurrection plant, Xerophyta humilis. J Exp Bot 54:2593–2595

    CAS  PubMed  Article  Google Scholar 

  23. Collett H, Shen A, Gardner M, Farrant JM, Denby KJ, Illing N (2004) Towards transcript profiling of desiccation tolerance in Xerophyta humilis: construction of a normalized 11 k X. humilis cDNA set and microarray expression analysis of 424 cDNAs in response to dehydration. Physiol Planta 122:39–53

    CAS  Article  Google Scholar 

  24. Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326

    CAS  PubMed  Article  Google Scholar 

  25. Cruz de Carvalho R, Berndardes da Silva A, Soares R, Almeida AM, Coelho AV, Marques da Silva J, Branquinho C (2014) Differential proteomics of dehydration and rehydration in bryophytes: evidence towards a common desiccation tolerance mechanism. Plant Cell Environ 37:1499–1515

    CAS  PubMed  Article  Google Scholar 

  26. Cuming A (1999) LEA Proteins. In: Shewry P, Casey R (eds) Seed proteins. Springer, Houten, pp 753–780

    Google Scholar 

  27. Dahmen H, Staub T, Schwinn FJ (1983) Technique for long-term preservation of phytopathogenic fungi in liquid nitrogen. Phytopathology 73:241–246

    Article  Google Scholar 

  28. Dinakar C, Bartels D (2012) Light response, oxidative stress management and nucleic acid stability in closely related Linderniaceae species differing in desiccation tolerance. Planta 236:541–555

    CAS  PubMed  Article  Google Scholar 

  29. Du D, Zhang Q, Cheng T, Pan H, Yang W, Sun L (2013) Genome-wide identification and analysis of late embryogenesis abundant (LEA) genes in Prunus mume. Mol Biol Rep 40:1937–1946

    CAS  PubMed  Article  Google Scholar 

  30. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Erlacher A, Cernava T, Cardinale M, Soh J, Sensen CW, Grube M, Berg G (2015) Rhizobiales as functional and endosymbiontic members in the lichen symbiosis of Lobaria pulmonaria L. Front Microbiol 6:53

    PubMed  PubMed Central  Article  Google Scholar 

  32. Farias ME, Revale S, Mancini E, Ordoñez O, Turjanski A, Cortez N, Vazquez MP (2011) Genome sequence of Sphingomonas sp. S17, isolated from an alkaline, hyperarsenic, and hypersaline volcano-associated lake at high altitude in the Argentinean Puna. J Bacteriol 193:3686–3687

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Farrant JM, Moore JP (2011) Programming desiccation-tolerance: from plants to seeds to resurrection plants. Curr Opin Plant Biol 14:340–345

    CAS  PubMed  Article  Google Scholar 

  34. Farrar JF (1976) The lichen as an ecosystem: observation and experiment. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic Press, London, pp 385–406

    Google Scholar 

  35. Fini A, Brunetti C, Di Ferdinando M, Ferrini F, Tattini M (2011) Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signal Behav 6(5):709–711

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Finn R, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:29–37

    Article  CAS  Google Scholar 

  37. Friedl T (1989) Comparative ultrastructure of pyrenoids in Trebouxia (Microthamniales, Chlorophyta). Plant Syst Evol 164:145–159

    Article  Google Scholar 

  38. Fu CH, Chen YW, Hsiao YY, Pan ZJ, Liu ZJ, Huang YM, Tsai WC, Chen HH (2011) OrchidBase: a collection of sequences of the transcriptome derived from orchids. Plant Cell Physiol 52:238–243

    CAS  PubMed  Article  Google Scholar 

  39. Gao B, Zhang D, Li X, Yang H, Zhang Y, Wood AJ (2015) De novo transcriptome characterization and gene expression profiling of the desiccation tolerant moss Bryum argenteum following rehydration. BMC Genom 16:416

    Article  CAS  Google Scholar 

  40. Garg R, Patel RK, Tyagi AK, Jain M (2011) De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res 18:53–63

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Gasulla F, de Nova PG, Esteban-Carrasco A, Zapata JM, Barreno E, Guera A (2009) Dehydration rate and time of desiccation affect recovery of the lichenic algae Trebouxia erici: alternative and classical protective mechanisms. Planta 231:195–208

    CAS  PubMed  Article  Google Scholar 

  42. Gasulla F, Jain R, Barreno E, Guéra A, Balbuena TS, Thelen JJ, Oliver MJ (2013) The response of Asterochloris erici (Ahmadjian) Skaloud et Peksa to desiccation: a proteomic approach. Plant Cell Environ 36:1363–1378

    CAS  PubMed  Article  Google Scholar 

  43. Gechev TS, Benina M, Obata T, Tohge T, Sujeeth N, Minkov I, Hille J, Temanni MR, Marriott AS, Bergström E, Thomas-Oates J, Antonio C, Mueller-Roeber B, Schippers JH, Fernie AR, Toneva V (2013) Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis. Cell Mol Life Sci 70:689–709

    CAS  PubMed  Article  Google Scholar 

  44. Goyal K, Walton L, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Grube M, Cardinale M, de Castro JV, Müller H, Berg G (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J 3:1105–1115

    PubMed  Article  Google Scholar 

  47. Guo B, Chen X, Dang P, Scully BT, Liang X, Holbrook CC, Yu J, Culbreath AK (2008) Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection. BMC Dev Biol 8:12

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  48. Guo B, Fedorova ND, Chen X, Wan CH, Wang W, Nierman WC, Deepak B, Yu J (2011) Gene expression profiling and identification of resistance genes to Aspergillus flavus infection in peanut through EST and microarray strategies. Toxins 3:737–753

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Haikarainen T, Papageorgiou AC (2010) Dps-like proteins: structural and functional insights into a versatile protein family. Cell Mol Life Sci 67:341–351

    CAS  PubMed  Article  Google Scholar 

  50. Hiraishi A, Matsuzawa Y, Kanbe T, Wakao N (2000) Acidisphaera rubrifaciens gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium isolated from acidic environments. Int J Syst Evol Microbiol 50:1539–1546

    CAS  PubMed  Article  Google Scholar 

  51. Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    CAS  PubMed  Article  Google Scholar 

  52. Holzinger A, Karsten U (2013) Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms. Front Plant Sci 4:1

    Article  Google Scholar 

  53. Holzinger A, Kaplan F, Blaas K, Zechmann B, Komsic-Buchmann K, Becker B (2014) Transcriptomics of desiccation tolerance in the streptophyte green alga Klebsormidium reveal a land plant-like defense reaction. PLoS ONE 9(10):e110630

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. Honegger R (1995) Experimental studies with foliose macrolichens: fungal responses to spatial disturbance at the organismic level and to spatial problems at the cellular level during drought stress events. Can J Bot 73:569–578

    Article  Google Scholar 

  55. Hori K, Maruyama F, Fujisawa T, Togashi T, Yamamoto N, Seo M, Sato S, Yamada T et al (2014) Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat Commun 5:3978

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Hundertmark M, Hincha DK (2008) LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genom 9:118

    Article  CAS  Google Scholar 

  57. Ingle RA, Schmidt UG, Farrant JM, Thomson JA, Mundree SG (2007) Proteomic analysis of leaf proteins during dehydration of the resurrection plant Xerophyta viscosa. Plant Cell Environ 30:435–446

    CAS  PubMed  Article  Google Scholar 

  58. Iturriaga G, Schneider K, Salamini F, Bartels D (1992) Expression of desiccation-related proteins from the resurrection plant Craterostigma plantagineum in transgenic tobacco. Plant Mol Biol 20:555–558

    CAS  PubMed  Article  Google Scholar 

  59. Iturriaga G, Cushman MAF, Cushman JC (2006) An EST catalogue from the resurrection plant Selaginella lepidophylla reveals abiotic stress-adaptive genes. Plant Sci 170:1173–1184

    CAS  Article  Google Scholar 

  60. Iuchi S, Yamaguchi-Shinozaki K, Urao T, Terao T, Shinozaki K (1996) Novel drought-inducible genes in the highly drought-tolerant cowpea: cloning of cDNAs and analysis of the expression of the corresponding genes. Plant Cell Physiol 37(8):1073–1082

    CAS  PubMed  Article  Google Scholar 

  61. Jones L, McQueen-Mason S (2004) A role for expansins in dehydration and rehydration of the resurrection plant Craterostigma plantagineum. FEBS Lett 559:61–65

    CAS  PubMed  Article  Google Scholar 

  62. Junttila S, Rudd S (2012) Characterization of a transcriptome from a non-model organism, Cladonia rangiferina, the grey reindeer lichen, using high-throughput next generation sequencing and EST sequence data. BMC Genom 13:575

    CAS  Article  Google Scholar 

  63. Junttila S, Laiho A, Gyenesei A, Rudd S (2013) Whole transcriptome characterization of the effects of dehydration and rehydration on Cladonia rangiferina, the grey reindeer lichen. BMC Genom 14:870

    Article  CAS  Google Scholar 

  64. Kabeche L, Compton DA (2013) Cyclin a regulates kinetochore-microtubules to promote faithful chromosome segregation. Nature 502(7469):110–113

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Kal AJ, van Zonneveld AJ, Benes V, van den Berg M, Koerkamp MG, Albermann K, Strack N, Ruijter JM, Richter A, Dujon B, Ansorge W, Tabak HF (1999) Dynamics of gene expression revealed by comparison of serial analysis of gene expression transcript profiles from yeast grown on two different carbon sources. Mol Biol Cell 10:1859–1872

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Kapraun DF (2007) Nuclear DNA content estimates in green algal lineages: chlorophyta and Streptophyta. Ann Bot 99:677–701

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Kikawada T, Minakawa N, Watanabe M, Okuda T (2005) Factors inducing successful anhydrobiosis in the African chironomid Polypedilum vanderplanki: significance of the larval tubular nest. Integr Comp Biol 45:710–714

    PubMed  Article  Google Scholar 

  69. Kosugi M, Arita M, Shizuma R, Moriyama Y, Kashino Y, Koike H, Satoh K (2009) Responses to desiccation stress in lichens are different from those in their photobionts. Plant Cell Physiol 50:879–888

    CAS  PubMed  Article  Google Scholar 

  70. Kranner I, Birtić S (2005) A modulating role for antioxidants in desiccation tolerance. Integr Comp Biol 45:734–740

    CAS  PubMed  Article  Google Scholar 

  71. Kranner I, Beckett R, Wornik S, Zorn M, Pfeifhofer HW (2002) Revival of a resurrection plant correlates with its antioxidant status. Plant J 31:13–24

    CAS  PubMed  Article  Google Scholar 

  72. Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheiner E, Pfeifhofer HW (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci USA 102:3141–3146

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Kranner I, Beckett R, Hochman A, Nash TH III (2008) Desiccation-tolerance in lichens: a review. Bryologist 111:576–593

    Article  Google Scholar 

  74. Lan T, Gao J, Zeng QY (2013) Genome-wide analysis of the LEA (Late Embryogenesis Abundant) protein gene family in Populus trichocarpa. Tree Genet Genomes 9:253–264

    Article  Google Scholar 

  75. Lange OL, Green TGA (2008) Diel and seasonal courses of ambient carbon dioxide concentration and their effect on productivity of the epilithic lichen Lecanora muralis in a temperate, suburban habitat. Lichenologist 40:449–462

    Article  Google Scholar 

  76. Le TN, Blomstedt CK, Kuang J, Tenlen J, Gaff DF, Hamill JD, Neale AD (2007) Desiccation-tolerance specific gene expression in leaf tissue of the resurrection plant Sporobolus stapfianus. Funct Plant Biol 34:589–600

    CAS  Article  Google Scholar 

  77. Leavitt SD, Nelsen MP, Lumbsch HT, Johnsonm LA, St. Clair LL (2013) Symbiont flexibility in subalpine rock shield lichen communities in the Southwestern USA. Bryologist 116:149–161

    Article  Google Scholar 

  78. Liang W, Zhou Y, Wang L, You X, Zhang Y, Cheng CL, Chen W (2012) Ultrastructural, physiological and proteomic analysis of Nostoc flagelliforme in response to dehydration and rehydration. J Proteomics 75:5604–5627

    CAS  PubMed  Article  Google Scholar 

  79. Lidén M, Jonsson Čabrajič AV, Ottoson-Löfvenius M, Palmqvist K, Lundmark T (2010) Species-specific activation time-lags can explain habitat restrictions in hydrophilic lichens. Plant Cell Environ 33:851–862

    PubMed  Google Scholar 

  80. Lipnicki LI (2015) The role of symbiosis in the transition of some eukaryotes from aquatic to terrestrial environments. Symbiosis 65:39–53

    CAS  Article  Google Scholar 

  81. Liu X, Wang Y, Gao H, Xu X (2011) Identification and characterization of genes encoding two novel LEA proteins in Antarctic and temperate strains of Chlorella vulgaris. Gene 482(1):51–58

    CAS  PubMed  Article  Google Scholar 

  82. Liu Y, Liu M, Li X, Cao B, Ma X (2014) Identification of differentially expressed genes in leaf of Reaumuria soongorica under PEG-induced drought stress by digital gene expression profiling. PLoS ONE 9(4):e94277

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  83. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    CAS  PubMed  Article  Google Scholar 

  84. López-Cristoffanini C, Zapata J, Gaillard F, Potin P, Correa JA, Contreras-Porcia L (2015) Identification of proteins involved in desiccation tolerance in the red seaweed Pyropia orbicularis (Rhodophyta Proteomics Bangiales). doi:10.1002/pmic.201400625

    Google Scholar 

  85. Lüttge U, Büdel B (2010) Resurrection kinetics of photosynthesis in desiccation-tolerant terrestrial green algae (Chlorophyta) on tree bark. Plant Biol 12:437–444

    PubMed  Article  CAS  Google Scholar 

  86. Lyall R, Ingle RA, Illing N (2014) The window of desiccation tolerance shown by early-stage germinating seedlings remains open in the resurrection plant, Xerophyta viscosa. PLoS one 9(3):e93093

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  87. Ma C, Wang H, Macnish AJ, Estrada-Melo AC, Lin J, Chang Y, Reid MS, Jiang CZ (2015) Transcriptomic analysis reveals numerous diverse protein kinases and transcription factors involved in desiccation tolerance in the resurrection plant Myrothamnus flabellifolia. Horticult Res 2:15034

    Article  CAS  Google Scholar 

  88. Maia J, Dekkers BJW, Dolle MJ, Ligterink W, Hilhorst HWM (2014) Abscisic acid (ABA) sensitivity regulates desiccation tolerance in germinated Arabidopsis seeds. New Phytol 203:81–93

    CAS  PubMed  Article  Google Scholar 

  89. Mariaux JB, Bockel C, Salamini F, Bartels D (1998) Desiccation-and abscisic acid-responsive genes encoding major intrinsic proteins (MIPs) from the resurrection plant Craterostigma plantagineum. Plant Mol Biol 38(6):1089–1099

    CAS  PubMed  Article  Google Scholar 

  90. Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Mazur P (1968) Survival of fungi after freezing and desiccation. Fungi 3:325–394

    Google Scholar 

  92. McDonald TR, Dietrich FS, Lutzoni F (2012) Multiple horizontal gene transfers of ammonium transporters/ammonia permeases from Prokaryotes to Eukaryotes: toward a new functional and evolutionary classification. Mol Biol Evol 29:51–60

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Mitra J, Xu G, Wang B, Li M, Deng X (2013) Understanding desiccation tolerance using the resurrection plant Boea hygrometrica as a model system. Front Plant Sci 4:446

    PubMed  PubMed Central  Article  Google Scholar 

  94. Moore JP, Hearshaw M, Ravenscroft N, Lindsey GG, Farrant JM, Brandt WF (2007) Desiccation-induced ultrastructural and biochemical changes in the leaves of the resurrection plant Myrothamnus flabellifolia. Aust J Bot 55:482–491

    CAS  Article  Google Scholar 

  95. Mowla SB, Thomson JA, Farrant JM, Mundree SG (2002) A novel stress-inducible antioxidant enzyme identified from the resurrection plant Xerophyta viscosa Baker. Planta 215:716–726

    CAS  PubMed  Article  Google Scholar 

  96. Muggia L, Perez-Ortega S, Kopun T, Zellnig G, Grube M (2014) Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Ann Bot 114:463–475

    PubMed  PubMed Central  Article  Google Scholar 

  97. Musser JM, Wagner GP (2015) Character trees from transcriptome data: origin and individuation of morphological characters and the so-called “species signal”. J Exp Zool (Mol Dev Evol) 324B:588–604

    Article  CAS  Google Scholar 

  98. Nardini A, Marchetto A, Tretiach M (2013) Water relations parameters of six Peltigera species correlate with their habitat preferences. Fungal Ecol 6:397–407

    Article  Google Scholar 

  99. Neale AD, Blomstedt CK, Bronson P, Le TN, Guthridg K, Evans J, Gaff DF, Hamill JD (2000) The isolation of genes from the resurrection grass Sporobolus stapfianus which are induced during severe drought stress. Plant Cell Environ 23:265–277

    CAS  Article  Google Scholar 

  100. O’Brien H (2013) Trebouxia update. http://www.photobiontdiversity.org/. Accessed 24 May 2015

  101. Oliver MJ, Dowd SE, Zaragoza J, Mauget SA, Payton PR (2004) The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis: transcript classification and analysis. BMC Genom 5:89

    Article  Google Scholar 

  102. Oliver MJ, Velten J, Mishler BD (2005) Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats? Integr Comp Biol 45:788–799

    PubMed  Article  Google Scholar 

  103. Oliver MJ, Hudgeons J, Dowd SE, Payton PR (2009) A combined subtractive suppression hybridization and expression profiling strategy to identify novel desiccation response transcripts from Tortula ruralis gametophytes. Physiol Plant 136:437–460

    CAS  PubMed  Article  Google Scholar 

  104. Pammenter NW, Berjak P (1999) A review of recalcitrant seed physiology in relation to desiccation-tolerance mechanisms. Seed Sci Res 9(01):13–37

    Article  Google Scholar 

  105. Piatkowski D, Schneider K, Salamini F, Bartels D (1990) Characterization of five abscisic acid-responsive cDNA clones isolated from the desiccation-tolerant plant Craterostigma plantagineum and their relationship to other water-stress genes. Plant Physiol 94:1682–1688

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. Piercey-Normore MD (2006) The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii. New Phytol 169:331–344

    CAS  PubMed  Article  Google Scholar 

  107. Pombert JF, Blouin NA, Lane C, Boucias D, Keeling PJ (2014) A lack of parasitic reduction in the obligate parasitic green alga Helicosporidium. PLoS Genet 10(5):e1004355

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  108. Powell S, Szklarczyk D, Trachana K, Roth A, Kuhn M, Muller J, Arnold R, Rattei T, Letunic I, Doerks T, Jensen LJ, von Mering C, Bork P (2012) eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic Acids Res 40:284–289

    Article  CAS  Google Scholar 

  109. Prieto-Dapena P, Castaño R, Almoguera C, Jordano J (2008) The ectopic overexpression of a seed-specific transcription factor, HaHSFA9, confers tolerance to severe dehydration in vegetative organs. Plant J 54:1004–1014

    CAS  PubMed  Article  Google Scholar 

  110. Printzen C, Fernández-Mendoza F, Muggia L, Berg G, Grube M (2012) Alphaproteobacterial communities in geographically distant populations of the lichen Cetraria aculeate. FEMS Microbiol Ecol 82:316–325

    CAS  PubMed  Article  Google Scholar 

  111. Proctor MCF (1990) The physiological basis of bryophyte production. Bot J Linn Soc 104:61–77

    Article  Google Scholar 

  112. Proctor MCF, Tuba Z (2002) Poikilohydry and homoiohydry: antithesis or spectrum of possibilities? New Phytol 156:327–349

    Article  Google Scholar 

  113. Proctor MCF, Oliver MJ, Wood AJ, Alpert P, Stark LR, Cleavitt NL, Mishler BD (2007) Desiccation-tolerance in bryophytes: a review. Bryologist 110:595–621

    CAS  Article  Google Scholar 

  114. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40:290–301

    Article  CAS  Google Scholar 

  115. Quintana ET, Badillo RF, Maldonado LA (2013) Characterisation of the first actinobacterial group isolated from a Mexican extremophile environment. Antonie Van Leeuwenhoek 104:63–70

    CAS  PubMed  Article  Google Scholar 

  116. Ravet K, Touraine B, Boucherez J, Briat JF, Gaymard F, Cellier F (2009) Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant J 57:400–412

    CAS  PubMed  Article  Google Scholar 

  117. Richardson DH, Richardson D (1981) The biology of mosses. Blackwell Scientific Publications, Oxford

    Google Scholar 

  118. Rodriguez MCS, Edsgärd D, Hussain SS, Alquezar D, Rasmussen M, Gilbert T, Nielsen BH, Bartels D, Mundy J (2010) Transcriptomes of the desiccation-tolerant resurrection plant Craterostigma plantagineum. Plant J 63:212–228

    CAS  PubMed  Article  Google Scholar 

  119. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    PubMed  PubMed Central  Article  Google Scholar 

  120. Schmitt I, Lumbsch HT (2009) Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi. PLoS ONE 4(2):e4437

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  121. Seqc/Maqc-Iii Consortium (2014) A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat Biotechnol 32(9):903–914

    Article  CAS  Google Scholar 

  122. Shi J, Karlsson HL, Johansson K, Gogvadze V, Xiao L, Li J, Burks T, Garcia-Bennett A, Uheida A, Muhammed M, Mathur S, Morgenstern R, Kagan VE, Fadeel B (2012) Microsomal glutathione transferase 1 protects against toxicity induced by silica nanoparticles but not by zinc oxide nanoparticles. ACS Nano 6(3):1925–1938

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    CAS  Article  Google Scholar 

  124. Stark LR, Brinda JC (2015) Developing sporophytes transition from an inducible to a constitutive ecological strategy of desiccation tolerance in the moss Aloina ambigua: effects of desiccation on fitness. Ann Bot 115:593–603

    PubMed  PubMed Central  Article  Google Scholar 

  125. Sun W, Bernard C, van Cotte BD, van Montagu M, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27:407–415

    CAS  PubMed  Article  Google Scholar 

  126. Šurbanovski N, Sargent DJ, Else MA, Simpson DW, Zhang H, Grant OM (2013) Expression of Fragaria vesca PIP aquaporins in response to drought stress: PIP down-regulation correlates with the decline in substrate moisture content. PLoS ONE 8(9):e74945

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  127. Tatar D, Sazak A, Guven K, Cetin D, Sahin N (2013) Amycolatopsis cihanbeyliensis sp. nov., a halotolerant actinomycete isolated from a salt mine. Int J Syst Evol Microbiol 63:3739–3743

    CAS  PubMed  Article  Google Scholar 

  128. Trainor FR, Gladych R (1995) Survival of algae in a desiccated soil: a 35-year study. Phycologia 34:191–192

    Article  Google Scholar 

  129. Treonis AM, Wall DH (2005) Soil nematodes and desiccation survival in the extreme arid environment of the Antarctic dry valleys. Integr Comp Biol 45:741–750

    PubMed  Article  Google Scholar 

  130. Tretiach M, Bertuzzi S, Candotto Carniel F, Virgilio D (2013) Seasonal acclimation in the epiphytic lichen Parmelia sulcata is influenced by change in photobiont population density. Oecologia 173:649–663

    PubMed  Article  Google Scholar 

  131. Tunjić M, Korac P (2013) Vertical and horizontal gene transfer in lichens. Period Biol 115:321–329

    Google Scholar 

  132. Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812

    CAS  PubMed  Article  Google Scholar 

  133. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:71–74

    Article  Google Scholar 

  134. Vander Willigen C, Pammenter NW, Mundree SG, Farrant JM (2004) Mechanical stabilization of desiccated vegetative tissues of the resurrection grass Eragrostis nindensis: Does a TIP3; 1 and/or compartmentalization of subcellular components and metabolites play a role? J Exp Bot 55:651–661

    CAS  PubMed  Article  Google Scholar 

  135. Veerman J, Vasil’ev S, Paton GD, Ramanauskas J, Bruce D (2007) Photoprotection in the lichen Parmelia sulcata: the origins of desiccation-induced fluorescence quenching. Plant Physiol 145:997–1005

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. Wagner GP, Koryu K, Lynch VJ (2012) Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci 131(4):281–285

    CAS  PubMed  Article  Google Scholar 

  137. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    CAS  PubMed  Article  Google Scholar 

  138. Wang L, Xu G, Chen H, Zhao Y, Xu N, Tian B, Hua Y (2008) DrRRA: a novel response regulator essential for the extreme radioresistance of Deinococcus radiodurans. Mol Microbiol 67:1211–1222

    CAS  PubMed  Article  Google Scholar 

  139. Wang XQ, Yang PF, Liu Z, Liu WZ, Hu Y, Chen H, Kuang TY, Pei ZM, Shen SH, He YK (2009) Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy. Plant Physiol 149:1739–1750

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. Wang Z, Fang B, Chen J, Zhang X, Luo Z, Huang L, Chen X, Li Y (2010) De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweet potato (Ipomoea batatas). BMC Genom 11:726

    CAS  Article  Google Scholar 

  141. Watkinson JI, Sioson AA, Vasquez-Robinet C, Shukla M, Kumar D, Ellis M, Heath LS, Ramakrishnan N, Chevone B, Watson LT, van Zyl L, Egertsdotter U, Sederoff RR, Grene R (2003) Photosynthetic acclimation is reflected in specific patterns of gene expression in drought-stressed loblolly pine. Plant Physiol 133(4):1702–1716

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. Weissman L, Garty J, Hochman A (2005) Rehydration of the lichen Ramalina lacera results in production of reactive oxygen species and nitric oxide and a decrease in antioxidants. Appl Environ Microb 71:2121–2129

    CAS  Article  Google Scholar 

  143. Williams BAP, Slamovits CH, Patron NJ, Fast NM, Keeling PJ (2005) A high frequency of overlapping gene expression in compacted eukaryotic genomes. Proc Natl Acad Sci USA 102:10936–10941

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  144. Wright JC (2001) Cryptobiosis 300 years on from Van Leeuwenhoek: What have we learned about Tardigrades? Zool Anz 240:563–582

    Article  Google Scholar 

  145. Xiao L, Wang H, Wan P, Kuang T, He Y (2011) Genome-wide transcriptome analysis of gametophyte development in Physcomitrella patens. BMC Plant Biol 11:117

    Article  CAS  Google Scholar 

  146. Yamamoto Y, Kinoshita Y, Yoshimura I (2002) Photobiont culturing. In: Kranner I, Beckett RP, Varma AK (eds) Protocols in lichenology. Culturing, biochemistry, ecophysiology and use in biomonitoring. Springer, Heidelberg, pp 34–42

    Google Scholar 

  147. Yobi A, Wone BWM, XuW Alexander DC, Guo L, Ryals JA, Oliver MJ, Cushman JC (2013) Metabolic profiling in Selaginella lepidophylla at various hydration states provides new insights into the mechanistic basis of desiccation tolerance. Mol Plant 6:369–385

    CAS  PubMed  Article  Google Scholar 

  148. Zha HG, Liu T, Zhou JJ, Sun H (2013) MS-desi, a desiccation-related protein in the floral nectar of the evergreen velvet bean (Mucuna sempervirens Hemsl): molecular identification and characterization. Planta 238:77–89

    CAS  PubMed  Article  Google Scholar 

  149. Zuo K, Wang J, Wu W, Chai Y, Sun X, Tang K (2005) Identification and characterization of differentially expressed ESTs of Gossypium barbadense infected by Verticillium dahliae with suppression subtractive hybridization. Mol Biol (Mosk) 39:191–199

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The study was funded by the Italian Ministry of Education, University, and Research under the PRIN 2010-11 project “TreeCity—Planning the green city in the global change era: urban tree functions and suitability for predicted future climates”, and by University of Trieste (“Finanziamento di Ateneo per la Ricerca Scientifica 2011”), local resp. M. T. The activity of F. C. C. was partially funded by a DIANET post-doc outgoing fellowship grant. The activity of E. B. was funded by the Italian Government Commission with “Fondo Trieste”. We thank Dr. Gabriele Leoni (Trieste) for technical help.

Author contributions

FCC wrote the manuscript, took part in the experimental design development and in the growth of Trebouxia cultures; MG wrote the manuscript and performed the bioinformatic analyses; AM took part in the experimental design, performed the isolation of Trebouxia, the RNA extraction and contributed in the bioinformatic analyses; EB performed the qRT-PCR analysis and produced the manuscript figures and tables; GDM performed the de novo assembly and annotation of the transcriptome; CM contributed in the extraction and purification of the RNAs; LM contributed in the isolation and identification of the Trebouxia photobiont and co-edited the manuscript; AP took part in the experimental design development and managed RNA sequencing and bioinformatic analyses; MT is the project supervisor, he took part in the experimental design development and co-edited the manuscript. All the authors critically contributed to the discussion of the manuscript and approved the final version

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marco Gerdol.

Additional information

Fabio Candotto Carniel and Marco Gerdol have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2016_468_MOESM1_ESM.docx

Supplementary material 1 (DOCX 205 kb)

11103_2016_468_MOESM2_ESM.docx

Supplementary material 2 (DOCX 16 kb)

11103_2016_468_MOESM3_ESM.docx

Supplementary material 3 (DOCX 14 kb)

11103_2016_468_MOESM4_ESM.docx

Supplementary material 4 (DOCX 27 kb)

11103_2016_468_MOESM5_ESM.gz

Supplementary material 5 (GZ 5545 kb)

11103_2016_468_MOESM6_ESM.docx

Supplementary material 6 (DOCX 16 kb)

11103_2016_468_MOESM7_ESM.docx

Supplementary material 7 (DOCX 17 kb)

11103_2016_468_MOESM8_ESM.docx

Supplementary material 8 (DOCX 335 kb)

11103_2016_468_MOESM9_ESM.docx

Supplementary material 9 (DOCX 491 kb)

11103_2016_468_MOESM10_ESM.docx

Supplementary material 10 (DOCX 19 kb)

11103_2016_468_MOESM11_ESM.docx

Supplementary material 11 (DOCX 24 kb)

11103_2016_468_MOESM12_ESM.docx

Supplementary material 12 (DOCX 24 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carniel, F.C., Gerdol, M., Montagner, A. et al. New features of desiccation tolerance in the lichen photobiont Trebouxia gelatinosa are revealed by a transcriptomic approach. Plant Mol Biol 91, 319–339 (2016). https://doi.org/10.1007/s11103-016-0468-5

Download citation

Keywords

  • Aero-terrestrial microalgae
  • Desiccation related proteins
  • Gene expression
  • Illumina
  • Lichenization
  • Trebouxiophyceae