Plant Molecular Biology

, Volume 90, Issue 6, pp 613–622 | Cite as

Recent advances in actinorhizal symbiosis signaling

  • Emilie Froussart
  • Jocelyne Bonneau
  • Claudine FrancheEmail author
  • Didier Bogusz


Nitrogen and phosphorus availability are frequent limiting factors in plant growth and development. Certain bacteria and fungi form root endosymbiotic relationships with plants enabling them to exploit atmospheric nitrogen and soil phosphorus. The relationships between bacteria and plants include nitrogen-fixing Gram-negative proteobacteria called rhizobia that are able to interact with most leguminous plants (Fabaceae) but also with the non-legume Parasponia (Cannabaceae), and actinobacteria Frankia, which are able to interact with about 260 species collectively called actinorhizal plants. Fungi involved in the relationship with plants include Glomeromycota that form an arbuscular mycorrhizal (AM) association intracellularly within the roots of more than 80 % of land plants. Increasing numbers of reports suggest that the rhizobial association with legumes has recycled part of the ancestral program used by most plants to interact with AM fungi. This review focuses on the most recent progress made in plant genetic control of root nodulation that occurs in non-legume actinorhizal plant species.


Actinorhizal plants Signaling Nitrogen-fixing root nodule symbiosis Nodulation Frankia Rhizobia 



We apologize to colleagues for not being able to cite all relevant and earlier papers because of space limitations and the focus of the review on recent research. Research conducted in the Rhizogenesis laboratory on actinorhizal plants was supported by the Institut de Recherche pour le Développement (IRD) and the Agence Nationale de la Recherche (ANR) Blanc project NewNod (ANR-06-BLAN-0095) and SESAM (BLAN-1708-01).


  1. Abdel-Lateif K, Vaissayre V, Gherbi H, Verries C, Meudec E, Perrine-Walker F, Cheynier V, Svistoonoff S, Franche C, Bogusz D, Hocher V (2013) Silencing of the chalcone synthase gene in Casuarina glauca highlights the important role of flavonoids during nodulation. New Phytol 199:1012–1021. doi: 10.1111/nph.12326 CrossRefPubMedGoogle Scholar
  2. Alloisio N, Felix S, Marechal J, Pujic P, Rouy Z, Vallenet D, Medigue C, Normand P (2007) Frankia alni proteome under nitrogen-fixing and nitrogen-replete conditions. Physiol Plant 130:440–453. doi: 10.1111/j.1399-3054.2007.00859 CrossRefGoogle Scholar
  3. Alloisio N, Queiroux C, Fournier P, Pujic P, Normand P, Vallenet D, Médigue C, Yamaura M, Kakoi K, Kucho K (2010) The Frankia alni symbiotic transcriptome. Mol Plant Microbe Interact 23:593–607. doi: 10.1094/MPMI-23-5-0593 CrossRefPubMedGoogle Scholar
  4. Andriankaja A, Boisson-Demier A, Frances L, Sauviac L, Jauneau A, Barker D, de Carvalho-Niebel F (2007) AP2-ERF transcription factors mediate Nod factor-dependent Mt ENOD11 activation in root hairs via a novel cis-regulatory motif. Plant Cell 19:2866–2885CrossRefPubMedPubMedCentralGoogle Scholar
  5. Battaglia M, Rípodas C, Clúa J, Baudin M, Aguilar OM, Niebel A, Zanetti ME, Blanco FA (2014) A nuclear factor Y interacting protein of the GRAS family is required for nodule organogenesis, infection thread progression, and lateral root growth. Plant Physiol 164:1430–1442. doi: 10.1104/pp.113.230896 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Beauchemin NJ, Furnholm T, Lavenus J, Svistoonoff S, Doumas P, Bogusz D, Laplaze L, Tisa LS (2012) Casuarina root exudates alter the physiology, surface properties, and plant infectivity of Frankia sp. strain CcI3. Appl Environ Microbiol 78:575–580. doi: 10.1128/AEM.06183-11 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Benoit LF, Berry AM (1997) Flavonoid-like compounds from seeds of red alder (Alnus rubra) influence host nodulation by Frankia (Actinomycetales). Physiol Plant 99:588–593. doi: 10.1111/j.1399-3054.1997.tb05361 CrossRefGoogle Scholar
  8. Berg RH (1999) Frankia forms infection threads. Can J Bot 77:1327–1333. doi: 10.1139/b99-073 Google Scholar
  9. Berry AM, Sunell LA (1990) The infection process and nodule development. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic Press, New York, pp 61–81Google Scholar
  10. Berry AM, McIntyre L, McCully ME (1986) Fine structure of root hair infection leading to nodulation in the Frankia-Alnus symbiosis. Can J Bot 64:292–305. doi: 10.1139/b86-043 CrossRefGoogle Scholar
  11. Bhuvaneswari TV, Solheim B (2000) Root-hair interactions in actinorhizal symbioses. In: Ridge RW, Emons AMC (eds) Root hairs: cell and molecular biology. Springer, Paris, pp 311–327CrossRefGoogle Scholar
  12. Bickhart DM, Benson DR (2011) Transcriptomes of Frankia sp. strain CcI3 in growth transitions. BMC Microbiol 11:192. doi: 10.1186/1471-2180-11-192 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bogusz D, Franche C (2015) Signaling and communication between actinorhizal plants and Frankia during the intracellular symbiotic process. In: de Bruijn FJ (ed) Biological nitrogen fixation. Wiley, Hoboken, pp 547–554CrossRefGoogle Scholar
  14. Breakspear A, Liu C, Roy S, Stacey N, Rogers C, Trick M, Morieri G, Mysore KS, Wen J, Oldroyd GE, Downie JA, Murray JD (2014) The root hair “infectome” of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for auxin signaling in rhizobial infection. Plant Cell 26:4680–4701. doi: 10.1105/tpc.114.133496 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Buee M, Rossignol M, Jauneau A, Ranjeva R, Becard G (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant Microbe Interact 13:693–698. doi: 10.1094/MPMI.2000.13.6.693 CrossRefPubMedGoogle Scholar
  16. Callaham D, Torrey JG (1977) Prenodule formation and primary nodule development in roots of Comptonia (Myricaceae). Can J Bot 17:2306–2318. doi: 10.1139/b77-262 CrossRefGoogle Scholar
  17. Capoen W, Sun J, Wysham D, Otegui MS, Venkateshwaran M, Hirsch S, Miwa H, Downie JA, Morris RJ, Ané JM, Oldroyd GE (2011) Nuclear membranes control symbiotic calcium signaling of legumes. Proc Natl Acad Sci USA 108:14348–14353. doi: 10.1073/pnas.1107912108 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cérémonie H, Cournoyer B, Maillet F, Normand P, Fernandez MP (1998) Genetic complementation of rhizobial nod mutants with Frankia DNA: Artifact or reality? Mol Gen Genet 260:115–119. doi: 10.1007/s004380050877 CrossRefPubMedGoogle Scholar
  19. Cérémonie H, Debellé F, Fernandez MP (1999) Structural and functional comparison of Frankia root hair deforming factor and rhizobia nod factor. Can J Bot 77:1293–1301. doi: 10.1139/b99-060 Google Scholar
  20. Chabaud M, Hassen Gherbi H, Pirolles E, Vaissayre V, Fournier J, Moukouanga D, Franche C, Bogusz D, Tisa LS, Barker DG, Svistoonoff S (2016) Chitinase-resistant hydrophilic symbiotic factors secreted by Frankia activate both Ca2+ spiking and NIN gene expression in the actinorhizal plant Casuarina glauca. New Phytol. doi: 10.1111/nph.13732 PubMedGoogle Scholar
  21. Champion A, Lucas M, Tromas A, Vaissayre V, Crabos A, Diédhiou I, Prodjinoto H, Moukouanga D, Pirolles E, Cissoko M, Bonneau J, Gherbi H, Franche C, Hocher V, Svistoonoff S, Laplaze L (2015) Inhibition of auxin signaling in Frankia species-infected cells in Casuarina glauca nodules leads to increased nodulation. Plant Physiol 167:1149–1157. doi: 10.1104/pp.114.255307 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Clavijo F, Diedhou I, Vaissayre V, Brottier L, Ascolate J, Moukouanga D, Crabos A, Auguy F, Franche C, Gherbi H, Champion A, Hocher V, Barker D, Bogusz D, Tisa L, Sivistoonoff S (2015) The Casuarina NIN gene is transcriptionally activated throughout Frankia root infection as well as in response to bacterial diffusible signals. New Phytol 208:887–903. doi: 10.1111/nph.13506 CrossRefPubMedGoogle Scholar
  23. Dawson JO (2007) The ecology of actinorhizal plants. In: K Pawlowski, WE Newton (eds) Nitrogen-fixing actinorhizal symbioses, vol. 6, Nitrogen fixation: applications and research progress. Springer, Dordrecht, pp 199–234. doi:  10.1007/978-1-4020-3547-0_8
  24. Demina IV, Persson T, Santos P, Plaszczyca M, Pawlowski K (2013) Comparison of the nodule versus root transcriptome of the actinorhizal plant Datisca glomerata: actinorhizal nodules contain a specific class of defensins. PLoS One 8:e72442. doi: 10.1371/journal.pone.0072442 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Diédhiou I, Tromas A, Cissoko M, Gray K, Parizot B, Crabos A, Alloisio N, Fournier P, Carro L, Svistoonoff S, Gherbi H, Hocher V, Diouf D, Laplaze L, Champion A (2014) Identification of potential transcriptional regulators of actinorhizal symbioses in Casuarina glauca and Alnus glutinosa. BMC Plant Biol 14:342. doi: 10.1186/s12870-014-0342-z CrossRefPubMedPubMedCentralGoogle Scholar
  26. Doyle JJ (1998) Phylogenetic perspectives on nodulation: an evolving views of plants and symbiotic bacteria. Trends Plant Sci 3:473–478. doi: 10.1016/S1360-1385(98)01340-5 CrossRefGoogle Scholar
  27. Doyle JJ (2011) Phylogenetic perspectives on the origins of nodulation. Mol Plant Microbe Interact 24:1289–1295. doi: 10.1094/MPMI-05-11-0114 CrossRefPubMedGoogle Scholar
  28. Etemadi M, Gutjahr C, Couzigou JM, Zouine M, Lauressergues D, Timmers A, Audran C, Bouzayen M, Bécard G, Combier JP (2014) Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Physiol 166:281–292. doi: 10.1104/pp.114.246595 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Franche C, Bogusz D (2012) Signalling and communication in actinorhizal symbiosis. In: Perotto S, Baluska F (eds) Signalling and communication in plant symbiosis. Springer, Berlin, pp 73–92. doi: 10.1007/978-3-642-20966-6 CrossRefGoogle Scholar
  30. Franche C, Lindstrom K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59. doi: 10.1007/s11104-008-9833-8 CrossRefGoogle Scholar
  31. Francis I, Holsters M, Vereecke D (2010) The Gram-positive side of plant-microbe interactions. Environ Microbiol 12:1–12. doi: 10.1111/j.1462-2920.2009.01989.x CrossRefPubMedGoogle Scholar
  32. Genre A, Chabaud M, Balzergue C, Puech-Pagès V, Novero M, Rey T, Fournier J, Rochange S, Bécard G, Bonfante P, Barker DG (2013) Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol 198:190–202. doi: 10.1111/nph.12146 CrossRefPubMedGoogle Scholar
  33. Gherbi H, Duhoux E, Franche C, Pawlowski K, Nassar A, Berry AM, Bogusz D (1997) Cloning of a full-length symbiotic hemoglobin cDNA and in situ localization of the corresponding mRNA in Casuarina root nodule. Physiol Plant 99:608–616. doi: 10.1111/j.1399-3054.1997.tb05364.x CrossRefGoogle Scholar
  34. Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Péret B, Laplaze L, Franche C, Parniske M, Bogusz D (2008) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Proc Natl Acad Sci USA 105:4928–4932. doi: 10.1073/pnas.0710618105 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S, Segurens B, Dossat C, Franck WL, Chang WS, Saunders E, Bruce D, Richardson P, Normand P, Dreyfus B, Pignol D, Stacey G, Emerich D, Verméglio A, Médigue C, Sadowsky M (2007) Legumes symbioses: absence of nod genes in photosynthetic bradyrhizobia. Science 316:1307–1312. doi: 10.1126/science.1139548 CrossRefPubMedGoogle Scholar
  36. Gleason C, Chaudhuri S, Yang T, Munoz A, Poovajah BW, Oldroyd GE (2006) Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition. Nature 441:1149–1152. doi: 10.1038/nature04812 CrossRefPubMedGoogle Scholar
  37. Granqvist E, Sun J, Op den Camp R, Pujic P, Hill L, Normand P, Morris RJ, Downie JA, Geurts R, Oldroyd GE (2015) Bacterial-induced calcium oscillations are common to nitrogen-fixing associations of nodulating legumes and non-legumes. New Phytol 207:551–558. doi: 10.1111/nph.13464 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Gtari M, Ghodhbane-Gtari F, Nouioui I, Ktari A, Hezbri K, Mimouni W, Sbissi I, Ayari A, Yamanaka T, Normand P, Tisa LS, Boudabous A (2015) Cultivating the uncultured: growing the recalcitrant cluster-2 Frankia strains. Sci Rep 5, 13112. doi: 10.1038/srep13112
  39. Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617. doi: 10.1146/annurev-cellbio-101512-122413 CrossRefPubMedGoogle Scholar
  40. Hahn D (2008) Polyphasic taxonomy of the genus Frankia. In: Pawlowski K, Newton WE (eds) Nitrogen–fixing actinorhizal symbioses. Springer, Dordrecht, pp 25–45. doi: 10.1007/978-1-4020-3547-0_2
  41. Hammad Y, Nalin R, Marechal J, Fiasson K, Pepin R, Berry AM, Normand P, Domenach AM (2003) A possible role for phenyl acetic acid (PAA) on Alnus glutinosa nodulation by Frankia. Plant Soil 254:193–205. doi: 10.1007/978-94-017-1601-7_21 CrossRefGoogle Scholar
  42. Hocher V, Alloisio N, Auguy F, Fournier P, Doumas P, Pujic P, Gherbi H, Queiroux C, Da Silva C, Wincker P, Normand P, Bogusz D (2011) Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol 156:700–711. doi: 10.1104/pp.111.174151 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hughes M, Donnelly C, Crozier A, Wheeler CT (1999) Effects of the exposure of roots of Alnus glutinosa to light on flavonoids and nodulation. Can J Bot 77:1311–1315. doi: 10.1139/b99-077 Google Scholar
  44. Imanishi L, Perrine-Walker FM, Ndour A, Vayssières A, Conejero G, Lucas M, Champion A, Laplaze L, Wall L, Svistoonoff S (2014) Role of auxin during intercellular infection of Discaria trinervis by Frankia. Front Plant Sci 5:399. doi: 10.3389/fpls.2014.00399 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kalo P, Gleason C, Edwards A, Marsh J, Mitra R, Hirsch S, Jakab J, Sims S, Long S, Rogers J, Kiss G, Downie J, Oldroyd G (2005) Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science 308:1786–1789. doi: 10.1126/science.1110951 CrossRefPubMedGoogle Scholar
  46. Kistner C, Parniske M (2002) Evolution of signal transduction in intracellular symbiosis. Trends Plant Sci 7:511–518. doi: 10.1016/S1360-1385(02)02356 CrossRefPubMedGoogle Scholar
  47. Knowlton S, Berry A, Torrey JG (1980) Evidence that associated soil bacteria may influence root hair infection of actinorhizal plants by Frankia. Can J Microbiol 26:971–977CrossRefPubMedGoogle Scholar
  48. Laplaze L, Gherbi H, Frutz T, Pawlowski K, Franche C, Macheix JJ, Auguy F, Bogusz D, Duhoux E (1999) Flavan-containing cells delimit Frankia-infected compartments in Casuarina glauca nodules. Plant Physiol 121:113–122. doi: 10.1104/pp.121.1.113 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Laplaze L, Duhoux E, Franche C, Frutz T, Svistoonoff S, Bisseling T, Bogusz D, Pawlowski K (2000) Casuarina glauca prenodule cells display the same differentiation as the corresponding nodule cells. Mol Plant Microbe Interact 13:107–112. doi: 10.1094/MPMI.2000.13.1.107 CrossRefPubMedGoogle Scholar
  50. Levy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ané JM, Lauber E, Bisseling T, Dénarié J, Rosenberg C, Debellé F (2004) A putative Ca2+ and calmodulin-dependant protein kinase required for bacterial and fungal symbioses. Science 303:1361–1364. doi: 10.1126/science.1093038 CrossRefPubMedGoogle Scholar
  51. Ludwig-Muller J (2011) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62:1757–1773. doi: 10.1093/jxb/erq412 CrossRefPubMedGoogle Scholar
  52. Maillet F, Poinsot V, André O, Puech-Pagès V, Haout A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Bécard G, Dénarié J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63. doi: 10.1038/nature09622 CrossRefPubMedGoogle Scholar
  53. Markmann K, Giczey G, Parniske M (2008) Functional adaptation of a plant receptor—kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biol 6:e68. doi: 10.1371/journal.pbio.0060068 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Marsh JF, Rakocevic A, Mitra RM, Brocard L, Eschstruth A, Long SR, Schultze M, Ratet P, Oldroyd GE (2007) Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase. Plant Physiol 144:324–335. doi: 10.1104/pp.106.093021 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mathesius U (2008) Goldacre paper: auxin: At the root of nodule development? Funct Plant Biol 35:651–668. doi: 10.1071/FP08177 CrossRefGoogle Scholar
  56. Meixner C, Ludwig-Müller J, Miersch O, Gresshoff P, Staehelin C, Vierheilig H (2005) Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007. Planta 222:709–715. doi: 10.1007/s00425-005-0003-4 CrossRefPubMedGoogle Scholar
  57. Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA, Oldroyd GED, Long SR (2004) A Ca2 +/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. Proc Natl Acad Sci USA 101:4701–4705. doi: 10.1073/pnas.0400595101 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Miwa H, Sun J, Oldroyd GED, Downie JA (2006) Analysis of nod-factor-induced calcium signaling in root hairs of symbiotically defective mutants of Lotus japonicus. Mol Plant Microbe Interact 19:914–923. doi: 10.1094/MPMI-19-0914 CrossRefPubMedGoogle Scholar
  59. Murray JD, Muni RRD, Torres-Jerez I, Tang Y, Allen S, Andriankaja M, Li G, Laxmi A, Cheng X, Wen J, Vaughan D, Schultze M, Sun J, Charpentier M, Oldroyd G, Tadege M, Ratet Mysore KS, Chen R, Udvardi MK (2011) Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula. Plant J 65:244–252. doi: 10.1111/j.1365-313X.2010.04415.x CrossRefPubMedGoogle Scholar
  60. Normand P, Orso S, Cournoyer B, Jeannin P, Chapelon C, Dawson J, Evtushenko L, Misra AK (1996) Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int J Syst Bacteriol 46:1–9. doi: 10.1099/00207713-46-1-1 CrossRefPubMedGoogle Scholar
  61. Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E, Bassi CA, Berry AM, Bickhart DM, Choisne N, Couloux A, Cournoyer B, Cruveiller S, Daubin V, Demange N, Francino MP, Goltsman E, Huang Y, Kopp OR, Labarre L, Lapidus A, Lavire C, Marechal J, Martinez M, Mastronunzio JE, Mullin BC, Niemann J, Pujic P, Rawnsley T, Rouy Z, Schenowitz C, Sellstedt A, Tavares F, Tomkins JP, Vallenet D, Valverde C, Wall LG, Wang Y, Medigue C, Benson DR (2007) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17:7–15. doi: 10.1101/gr.5798407 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Obertello M, Wall L, Laplaze L, Nicole M, Auguy F, Gherbi H, Bogusz D, Franche C (2007) Functional analysis of the metallothionein gene cgMT1 isolated from the actinorhizal tree Casuarina glauca. Mol Plant Microbe Interact 20:1231–1240. doi: 10.1094/MPMI-20-10-1231 CrossRefPubMedGoogle Scholar
  63. Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144. doi: 10.1146/annurev-genet-110410-132549 CrossRefPubMedGoogle Scholar
  64. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775. doi: 10.1038/nrmicro1987 CrossRefPubMedGoogle Scholar
  65. Peer WA (2013) From perception to attenuation: auxin signalling and responses. Curr Opin Plant Biol 16:561–568. doi: 10.1016/j.pbi.2013.08.003 CrossRefPubMedGoogle Scholar
  66. Péret B, Swarup R, Jansen L, Devos G, Auguy F, Collin M, Santi C, Hocher V, Franche C, Bogusz D, Bennett M, Laplaze L (2007) Auxin influx activity is associated with Frankia infection during actinorhizal nodule formation in Casuarina glauca. Plant Physiol 144:1852–1862. doi: 10.1104/pp.107.101337 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Perrine-Walker F, Doumas P, Lucas M, Vaissayre V, Beauchemin NJ, Band LR, Chopard J, Crabos A, Conejero G, Péret B, King JR, Verdeil JL, Hocher V, Franche C, Bennett MJ, Tisa LS, Laplaze L (2010) Auxin carriers localization drives auxin accumulation in plant cells infected by Frankia in Casuarina glauca actinorhizal nodules. Plant Physiol 154:1372–1380. doi: 10.1104/pp.110.163394 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Persson T, Benson DR, Normand P, Vanden Heuvel B, Pujic P, Chertkov O, Teshima H, Bruce DC, Detter C, Tapia R, Han S, Han J, Woyke T, Pitluck S, Pennacchio L, Nolan M, Ivanova N, Pati A, Land ML, Pawlowski K, Berry AM (2011) Genome sequence of “Candidatus Frankia datiscae” Dg1, the uncultured microsymbiont from nitrogen-fixing root nodules of the dicot Datisca glomerata. J Bacteriol 193:7017–7018. doi: 10.1128/JB.06208-11 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Persson T, Battenberg K, Demina IV, Persson T, Battenberg K, Demina IV, Vigil-Stenman T, Vanden Heuvel B, Pujic P, Facciotti MT, Wilbanks EG, O’Brien A, Fournier P, Cruz Hernandez MA, Mendoza Herrera A, Médigue C, Normand P, Pawlowski K, Berry AM (2015) Candidatus Frankia datiscae Dg1, the actinobacterial microsymbiont of Datisca glomerata, expresses the canonical nod genes nodABC in symbiosis with its host plant. PLoS One 10:e0127630. doi: 10.1371/journal.pone.0127630 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Popovici J, Comte G, Bagnarol E, Alloisio N, Fournier P, Bellvert F, Bertrand C, Fernandez MP (2010) Differential effects of rare specific flavonoids on compatible and incompatible strains in the Myrica gale-Frankia actinorhizal symbiosis. Appl Environ Microbiol 76:2451–2460. doi: 10.1128/AEM.02667-09 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843CrossRefPubMedPubMedCentralGoogle Scholar
  72. Rípodas C, Clúa J, Battaglia M, Baudin M, Niebel A, Zanetti ME, Blanco F (2014) Transcriptional regulators of legume-rhizobia symbiosis: nuclear factors Ys and GRAS are two for tango. Plant Signal Behav 9:e28847. doi: 10.4161/psb.28847 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Schauser L, Roussis A, Stiller J, Stougaard J (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402:191–195. doi: 10.1038/46058 CrossRefPubMedGoogle Scholar
  74. Singh S, Katzer K, Lambert J, Cerri M, Parniske M (2014) CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development. Cell Host Microbe 15:139–152CrossRefPubMedGoogle Scholar
  75. Smit P, Raedts J, Portyanko V, Debelle F, Gough C, Bisseling T, Geurts R (2005) NSP1 of the GRAS protein family is essential for rhizobial nod factor-induced transcription. Science 308:1789–1791CrossRefPubMedGoogle Scholar
  76. Smolander A, Sarsa ML (1990) Frankia strains of soil under Betula pendula: behaviour in soil and in pure culture. Plant Soil 122:129–136. doi: 10.1007/BF02851920 CrossRefGoogle Scholar
  77. Soltis DE, Soltis PS, Morgan DR, Swensen SM, Mullin BC, Dowd JM, Martin PG (1995) Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc Natl Acad Sci USA 92:2647–2651. doi: 10.1073/pnas.92.7.2647 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Soyano T, Kouchi H, Hirota A, Hayashi M (2013) NODULE INCEPTION directly targets NF-Y subunit genes to regulate essential processes of root nodule development in Lotus japonicus. PLoS Genet 9:e1003352. doi: 10.1371/journal.pgen.1003352 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sörlin S (2015) Planetary boundaries: guiding human development on a changing planet. Science. doi: 10.1126/science.1259855 Google Scholar
  80. Sukumar P, Legué V, Vayssières A, Martin F, Tuskan GA, Kalluri UC (2013) Involvement of auxin pathways in modulating root architecture during beneficial plant-microorganism interactions. Plant Cell Environ 36:909–919. doi: 10.1111/pce.12036 CrossRefPubMedGoogle Scholar
  81. Svistoonoff S, Laplaze L, Auguy F, Runions J, Duponnois R, Haseloff J, Franche C, Bogusz D (2003) cg12 expression is specifically linked to infection of root hairs and cortical cells during Casuarina glauca and Allocasuarina verticillata actinorhizal nodule development. Mol Plant Microbe Interact 16:600–607. doi: 10.1094/MPMI.2003.16.7.600 CrossRefPubMedGoogle Scholar
  82. Svistoonoff S, Benabdoun FM, Nambiar-Veetil M, Imanishi L, Vaissayre V, Cesari S, Diagne N, Hocher V, de Billy F, Bonneau J, Wall L, Ykhlef N, Rosenberg C, Bogusz D, Franche C, Gherbi H (2013) The independent acquisition of plant root nitrogen-fixing symbiosis in Fabids recruited the same genetic pathway for nodule organogenesis. PLoS One 8:e64515. doi: 10.1371/journal.pone.0064515 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Swensen SM, Benson DR (2008) Evolution of actinorhizal host plants and Frankia endosymbionts. In: Pawlowski K, Newton WE (eds) Nitrogen fixing actinorhizal symbioses. Springer, Netherlands, pp 73–104CrossRefGoogle Scholar
  84. Tirichine L, Imaizumi-Anraku H, Yoshida S, Murakami Y, Madsen L, Miwa H, Nakagawa T, Sandal N, Albrektsen A, Kawaguchi M, Downie A, Sato S, Tabata S, Kouchi H, Parniske M, Kawasaki S, Stougaard J (2006) Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature 441:1153–1156. doi: 10.1038/nature04862 CrossRefPubMedGoogle Scholar
  85. Trinick MJ (1973) Symbiosis between Rhizobium and the non-legume, Trema aspera. Nature 244:459–460. doi: 10.1038/244459a0 CrossRefGoogle Scholar
  86. Trinick MJ (1979) Structure of nitrogen-fixing nodules formed by Rhizobium on roots of Parasponia andersonii planch. Can J Microbiol 25:565–578. doi: 10.1139/m79-082 CrossRefPubMedGoogle Scholar
  87. Udwary DW, Gontang EA, Jones AC, Jones CS, Schultzb AW, Winterb JM, Yang JY, Beauchemin N, Capsonb TL, Clark BR, Esquenazi E, Eustáquiob AS, Freel K, Gerwick L, Gerwick WH, Gonzaleze D, Liu WT, Malloy KL, Maloney KN, Nett M, Nunnery JK, Penn K, Prieto-Davo A, Simmons TL, Weitz S, Wilson MC, Tisa LS, Dorrestein PC, Moore BS (2011) Significant natural product biosynthetic potential of actinorhizal symbionts of the genus Frankia, as revealed by comparative genomic and proteomic analyses. Appl Environ Microbiol 77:3617–3625. doi: 10.1128/AEM.00038-11 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Valverde C, Wall LG (1999) The regulation of nodulation in Discaria trinervis (Rhamnaceae)—Frankia symbiosis. Can J Bot 77:1302–1310. doi: 10.1139/b99-072 Google Scholar
  89. Van Ghelue M, Løvaas E, Ring E, Solheim B (1997) Early interactions between Alnus glutinosa and Frankia strain ArI3. Production and specificity of root hair deformation factor(s). Physiol Plant 99:579–587. doi: 10.1111/j.1399-3054.1997.tb05360 CrossRefGoogle Scholar
  90. Wall LG, Berry AM (2008) Early interactions infection and nodulation in actinorhizal symbiosis. In: Pawlowski K, Newton WE (eds) Nitrogen fixing actinorhizal symbiosis, vol 6. Springer, New York, pp 147–166CrossRefGoogle Scholar
  91. Wasson AP, Pellerone FI, Mathesius U (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18:1617–1629. doi: 10.1105/tpc.105.038232 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Werner GDA, Cornwell WK, Sprent JI, Kattge J, Kiers ET (2014) A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nat Commun 5:4087. doi: 10.1038/ncomms5087 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Wheeler CT, Crozier A, Sandberg G (1984) The biosynthesis of indole-3-acetic acid by Frankia. Plant Soil 78:99–104. doi: 10.1007/BF02277843 CrossRefGoogle Scholar
  94. Yoro E, Suzaki T, Toyokura K, Miyazawa H, Fukaki H, Kawaguchi M (2014) A positive regulator of nodule organogenesis, NODULE INCEPTION, acts as a negative regulator of rhizobial infection in Lotus japonicus. Plant Physiol 165:747–758. doi: 10.1104/pp.113.233379 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Zhang J, Subramanian S, Stacey G, Yu O (2009) Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J 57:171–183. doi: 10.1111/j.1365-313X.2008.03676.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Emilie Froussart
    • 1
  • Jocelyne Bonneau
    • 1
  • Claudine Franche
    • 1
  • Didier Bogusz
    • 1
  1. 1.Equipe Rhizogenèse, UMR DIADE (IRD-UM), Institut de Recherche pour le Développement (IRD)Montpellier Cedex 5France

Personalised recommendations