Skip to main content
Log in

Comparison of gene expression profiles and responses to zinc chloride among inter- and intraspecific hybrids with growth abnormalities in wheat and its relatives

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Hybrid necrosis is a well-known reproductive isolation mechanism in plant species, and an autoimmune response is generally considered to trigger hybrid necrosis through epistatic interaction between disease resistance-related genes in hybrids. In common wheat, the complementary Ne1 and Ne2 genes control hybrid necrosis, defined as type I necrosis. Two other types of hybrid necrosis (type II and type III) have been observed in interspecific hybrids between tetraploid wheat and Aegilops tauschii. Another type of hybrid necrosis, defined here as type IV necrosis, has been reported in F1 hybrids between Triticum urartu and some accessions of Triticum monococcum ssp. aegilopoides. In types I, III and IV, cell death occurs gradually starting in older tissues, whereas type II necrosis symptoms occur only under low temperature. To compare comprehensive gene expression patterns of hybrids showing growth abnormalities, transcriptome analysis of type I and type IV necrosis was performed using a wheat 38k oligo-DNA microarray. Defense-related genes including many WRKY transcription factor genes were dramatically up-regulated in plants showing type I and type IV necrosis, similarly to other known hybrid abnormalities, suggesting an association with an autoimmune response. Reactive oxygen species generation and necrotic cell death were effectively inhibited by ZnCl2 treatment in types I, III and IV necrosis, suggesting a significant association of Ca2+ influx in upstream signaling of necrotic cell death in wheat hybrid necrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alcázar R, García AV, Parker JE, Reymond M (2009) Incremental steps toward incompatibility revealed by Arabidopsis epistatic interactions modulating salicylic acid pathway activation. Proc Natl Acad Sci USA 106:334–339

    Article  PubMed Central  PubMed  Google Scholar 

  • Alcázar R, García AV, Kronholm I, de Meaux J, Koornneef M, Parker JE, Reymond M (2010) Natural variation at Strubbelig Receptor Kinase 3 drives immune-triggered incompatibilities between Arabidopsis thaliana accessions. Nat Genet 42:1135–1139

    Article  PubMed  Google Scholar 

  • Bindschedler LV, Minibayeva F, Gardner SL, Gerrish C, Davies DR, Bolwell GP (2001) Early signalling events in the apoplastic oxidative burst in suspension cultured French bean cells involve camp and Ca2+. New Phytol 151:185–194

    Article  CAS  Google Scholar 

  • Bomblies K, Weigel D (2007) Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. Nat Rev Genet 8:382–393

    Article  CAS  PubMed  Google Scholar 

  • Bomblies K, Lempe J, Epple P, Warthmann N, Lanz C, Dangl JL, Weigel D (2007) Autoimmune response as a mechanism for Dobzhansky–Muller-type incompatibility syndrome in plants. PLoS Biol 5:e236

    Article  PubMed Central  PubMed  Google Scholar 

  • Brandolini A, Vaccino P, Boggini G, Özkan H, Kilian B, Salamini F (2006) Quantification of genetic relationships among A genomes of wheats. Genome 49:297–305

    Article  CAS  PubMed  Google Scholar 

  • Castagna R, Maga G, Perenzin M, Heun M, Salamini F (1994) RFLP-based genetic relationships of einkorn wheats. Theor Appl Genet 88:818–823

    Article  CAS  PubMed  Google Scholar 

  • Castagna R, Gnocchi S, Perenzin M, Heun M (1997) Genetic variability of the wild diploid wheat Triticum urartu revealed by RFLP and RAPD markers. Theor Appl Genet 94:424–430

    Article  CAS  Google Scholar 

  • Chae E, Bomblies K, Kim ST, Karelina D, Zaidem M, Ossowski S, Martín-Pizarro C, Laitinen RAE, Rowan BA, Tenenboim H, Lechner S, Demar M, Habring-Müller A, Lanz C, Rätsch G, Weigel D (2014) Species-wide genetic incompatibility analysis identifies immune genes as hot spots of deleterious epistasis. Cell 159:1341–1351

    Article  CAS  PubMed  Google Scholar 

  • Chu CG, Faris JD, Friesen TL, Xu SS (2006) Molecular mapping of hybrid necrosis genes Ne1 and Ne2 in hexaploid wheat using microsatellite markers. Theor Appl Genet 112:1374–1381

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Dalal M, Khanna-Chopra R (2001) Differential response of antioxidant enzymes in leaves of necrotic wheat hybrids and their parents. Physiol Plant 111:297–304

    Article  CAS  PubMed  Google Scholar 

  • Davies DR, Bindschedler LV, Strickland TS, Bolwell GP (2006) Production of reactive oxygen species in Arabidopsis thaliana cell suspension cultures in response to an elicitor from Fusarium oxysporum: implications for basal resistance. J Exp Bot 57:1817–1827

    Article  CAS  PubMed  Google Scholar 

  • Dhaliwal HS (1977) Basis of difference between reciprocal crosses involving Triticum boeoticum and T. urartu. Theor Appl Genet 49:283–286

    Article  CAS  PubMed  Google Scholar 

  • Fricano A, Brandolini A, Rossini L, Sourdille P, Wunder J, Effgene S, Hidalgo A, Erba D, Piffanelli P, Salamini F (2014) Crossability of Triticum urartu and Triticum monococcum wheats, homoeologous recombination and description of a panel of interspecific introgression lines. G3 4:1931–1941

    Article  PubMed Central  PubMed  Google Scholar 

  • Gill BS, Waines JG (1978) Paternal regulation of seed development in wheat hybrids. Theor Appl Genet 51:265–270

    Article  CAS  PubMed  Google Scholar 

  • Hatano H, Mizuno N, Matsuda R, Shitsukawa N, Park P, Takumi S (2012) Dysfunction of mitotic cell division at shoot apices triggered severe growth abortion in interspecific hybrids between tetraploid wheat and Aegilops tauschii. New Phytol 194:1143–1154

    Article  CAS  PubMed  Google Scholar 

  • Hermsen JGT (1963) The genetic basis of hybrid necrosis in wheat. Genetica 33:245–287

    Article  Google Scholar 

  • Hoat TX, Nakayashiki H, Tosa Y, Mayama S (2006) Specific cleavage of ribosomal RNA and mRNA during victorin-induced apoptotic cell death in oat. Plant J 46:922–933

    Article  CAS  PubMed  Google Scholar 

  • Ishihama N, Yoshioka H (2012) Post-translational regulation of WRKY transcription factors in plant immunity. Curr Opin Plant Biol 15:431–437

    Article  CAS  PubMed  Google Scholar 

  • Jeuken MJW, Zhang NW, McHale LK, Pelgrom K, den Boer E, Lindhout P, Michelmore RW, Visser RGF, Niks RE (2009) Rin4 causes hybrid necrosis and race-specific resistance in an interspecific lettuce hybrid. Plant Cell 21:3368–3378

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson BL, Dhaliwal HS (1976) Reproductive isolation of Triticum boeoticum and Triticum urartu and the origin of the tetraploid wheat. Am J Bot 63:1088–1094

    Article  Google Scholar 

  • Kawaura K, Mochida K, Ogihara Y (2008) Genome-wide analysis for identification of salt-responsive genes in common wheat. Funct Integr Genomics 8:277–286

    Article  CAS  PubMed  Google Scholar 

  • Khanna-Chopra R, Dalal M, Kumar PG, Laloraya M (1998) A genetic system involving superoxide causes F1 necrosis in wheat (Triticum aestivum L.). Biochem Biophys Res Commun 248:712–715

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lucas A (2011) amap: another multidimentional analysis package. R package version 0.8-7. http://CRNA.R-project.org/package=amap

  • Ma W, Berkowitz GA (2007) The grateful dead: calcium and cell death in plant innate immunity. Cell Microbiol 9:2571–2585

    Article  CAS  PubMed  Google Scholar 

  • Masuda Y, Yamada T, Kuboyama T, Marubashi W (2007) Identification and characterization of genes involved in hybrid lethality in hybrid tobacco cells (Nicotiana suaveolens x N. tabacum) using suppression subtractive hybridization. Plant Cell Rep 26:1595–1604

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka Y (2011) Evolution of polyploid Triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol 52:750–764

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka Y, Takumi S, Kawahara T (2007) Natural variation for fertile triploid F1 formation in allohexaploid wheat speciation. Theor Appl Genet 115:509–518

    Article  PubMed  Google Scholar 

  • Mizumoto K, Hirosawa S, Nakamura C, Takumi S (2002) Nuclear and chloroplast genome genetic diversity in the wild einkorn wheat, Triticum urartu, revealed by AFLP and SSLP analyses. Hereditas 137:208–214

    Article  Google Scholar 

  • Mizuno N, Hosogi N, Park P, Takumi S (2010) Hypersensitive response-like reaction is associated with hybrid necrosis in interspecific crosses between tetraploid wheat and Aegilops tauschii Coss. PLoS One 5:e11326

    Article  PubMed Central  PubMed  Google Scholar 

  • Mizuno N, Shitsukawa N, Hosogi N, Park P, Takumi S (2011) Autoimmune response and repression of mitotic cell division occur in inter-specific crosses between tetraploid wheat and Aegilops tauschii Coss. that show low temperature-induced hybrid necrosis. Plant J 68:114–128

    Article  CAS  PubMed  Google Scholar 

  • Mur LAJ, Kenton P, Lioyd AJ, Ougham H, Prats E (2008) The hypersensitive response; the centenary is upon us but how much do we know? J Exp Bot 59:501–520

    Article  CAS  PubMed  Google Scholar 

  • Myhre S, Tveit H, Mollestad T, Laegreid A (2006) Additional gene ontology structure for improved biological reasoning. Bioinformatics 22:2020–2027

    Article  CAS  PubMed  Google Scholar 

  • Nakano H, Mizuno N, Tosa Y, Yoshida K, Park P, Takumi S (2015) Accelerated senescence and enhanced disease resistance in hybrid chlorosis lines derived from interspecific crosses between tetraploid wheat and Aegilops tauschii. PLoS One. doi:10.1371/journal.pone.0121583

    Google Scholar 

  • Nishikawa K (1960) Hybrid lethality in crosses between Emmer wheats and Aegilops squarrosa, I. Vitality of F1 hybrids between emmer wheats and Ae. squarrosa var. typica. Seiken Ziho 11:21–28

    Google Scholar 

  • Nishikawa K (1962a) Hybrid lethality in crosses between Emmer wheats and Aegilops squarrosa, II. Synthesized 6x wheats employed as test varieties. Jpn J Genet 37:227–236

    Article  Google Scholar 

  • Nishikawa K (1962b) Hybrid lethality in crosses between Emmer wheats and Aegilops squarrosa, III. Gene analysis of type-2 necrosis. Seiken Ziho 14:45–50

    Google Scholar 

  • Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    Article  CAS  PubMed  Google Scholar 

  • Presgraves DC (2010) The molecular evolutionary basis of species formation. Nat Rev Genet 11:175–180

    Article  CAS  PubMed  Google Scholar 

  • Pukhalskiy VA, Martynov SP, Dobrotvorskaya TV (2000) Analysis of geographical and breeding-related distribution of hybrid necrosis genes in bread wheat (Triticum aestivum L.). Euphytica 114:233–240

    Article  CAS  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Rieseberg LH, Willis JH (2007) Plant speciation. Science 317:910–914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roy RP (1955) Semi-lethal hybrids in crosses of species and synthetic amphidiploids of Tritium and Aegilops. Indian J Genet Plant Breed 14:88–98

    Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trend Plant Sci 15:247–258

    Article  CAS  Google Scholar 

  • Sears ER (1944) Inviability of intergeneric hybrids involving Triticum monococcum and T. aegilopoides. Genetics 29:113–127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song CJ, Steinebrunner I, Wang X, Stout SC, Roux SJ (2006) Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis. Plant Physiol 140:1222–1232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sugie A, Murai K, Takumi S (2007) Alteration of respiration capacity and transcript accumulation levels of alternative oxidase genes in necrosis lines of common wheat. Genes Genet Syst 82:231–239

    Article  CAS  PubMed  Google Scholar 

  • Takumi S, Mizuno N (2011) Low temperature-induced necrosis shows phenotypic plasticity in wheat triploid hybrids. Plant Signal Behav 6:1431–1433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takumi S, Motomura Y, Iehisa JCM, Kobayashi F (2013) Segregation distortion caused by weak hybrid necrosis in recombinant inbred lines of common wheat. Genetica 141:463–470

    Article  PubMed  Google Scholar 

  • Tsunewaki K (1960) Monosomic and conventional analyses in common wheat. III. Lethality. Jpn J Genet 35:71–75

    Article  Google Scholar 

  • Tsunewaki K (1970) Necrosis and chlorosis genes in common wheat and its ancestral species. Seiken Ziho 22:67–75

    Google Scholar 

  • Tsunewaki K (1992) Aneuploid analyses of hybrid necrosis and hybrid chlorosis in tetraploid wheats using the D genome chromosome substitution lines of durum wheat. Genome 35:594–601

    Article  Google Scholar 

  • Tsunewaki K, Koba T (1979) Production and genetic characterization of the co-isogenic lines of a common wheat Triticum aestivum cv. S-615 for ten major genes. Euphytica 28:579–592

    Article  Google Scholar 

  • Warnes GR (2012) gplots: various R programming tools for plotting data. R package version 2.11.0. http://CRAN.R-project.org/package=gplots

  • Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–692

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamagishi Y (1987) Phylogenetic differentiation between two species of the wild diploid wheats. Genbunsha, Kyoto, Japan. ISBN4-87609-144-7

  • Yamamoto E, Takashi T, Morinaka Y, Lin S, Wu J, Matsumoto T, Kitano H, Matsuoka M, Ashikari M (2010) Gain of deleterious function caused an autoimmune response and Bateson–Dobzhansky–Muller incompatibility in rice. Mol Genet Genomics 283:305–315

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank emeritus professor Dr. Koichiro Tsunewaki for supplying seeds of NILs, Ne1-S615 and Ne2-S615. We are grateful to Professor Dr. Hitoshi Nakayashiki for his useful suggestions. The diploid wheat seeds used in this study were supplied by the National BioResource Project-Wheat, Japan (www.nbrp.jp). This work was supported by Grants-in-Aid for Scientific Research (B) Nos. 21380005 and 25292008 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeo Takumi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takamatsu, K., Iehisa, J.C.M., Nishijima, R. et al. Comparison of gene expression profiles and responses to zinc chloride among inter- and intraspecific hybrids with growth abnormalities in wheat and its relatives. Plant Mol Biol 88, 487–502 (2015). https://doi.org/10.1007/s11103-015-0338-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-015-0338-6

Keywords

Navigation