Skip to main content

Advertisement

Log in

Current status of viral expression systems in plants and perspectives for oral vaccines development

  • Review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

During the last 25 years, the technology to produce recombinant vaccines in plant cells has evolved from modest proofs of the concept to viable technologies adopted by some companies due to significant improvements in the field. Viral-based expression strategies have importantly contributed to this success owing to high yields, short production time (which is in most cases free of tissue culture steps), and the implementation of confined processes for production under GMPs. Herein the distinct expression systems based on viral elements are analyzed. This review also presents the outlook on how these technologies have been successfully applied to the development of plant-based vaccines, some of them being in advanced stages of development. Perspectives on how viral expression systems could allow for the development of innovative oral vaccines constituted by minimally-processed plant biomass are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Angell SM, Baulcombe DC (1997) Consistent gene silencing in transgenic plants expressing a replicating Potato virus X RNA. EMBO J 16:3675–3684

    CAS  PubMed Central  PubMed  Google Scholar 

  • Argüello-Astorga GR, Guevara-Gonzalez RG, Herrera-Estrella LR, Rivera-Bustamante RF (1994) Geminivirus replication origins have a group-specific organization of iterative elements: a model for replication. Virology 203(1):90–100

    PubMed  Google Scholar 

  • Azegami T, Yuki Y, Kiyono H (2014) Challenges in mucosal vaccines for the control of infectious diseases. Int Immunol 26:517–528

    CAS  PubMed  Google Scholar 

  • Azmi F, Ahmad Fuaad AA, Skwarczynski M, Toth I (2013) Recent progress in adjuvant discovery for peptide-based subunit vaccines. Hum Vaccin Immunother 10:27332

    PubMed  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 7006:356–363

  • Baulcombe D, Chapman S, Santa Cruz S (1995) Jellyfish green fluorescent protein as a reporter for virus infections. Plant J 7(6):1045–1053

    CAS  PubMed  Google Scholar 

  • Cañizares MC, Lomonossoff GP, Nicholson L (2005) Development of Cowpea mosaic virus-based vectors for the production of vaccines in plants. Expert Rev Vaccines 4:687–697

    PubMed  Google Scholar 

  • Casal JI, Langeveld JP, Cortés E, Schaaper WW, van Dijk E, Vela C, Kamstrup S, Meloen RH (1995) Peptide vaccine against canine parvovirus: identification of two neutralization subsites in the N terminus of VP2 and optimization of the amino acid sequence. J Virol 69(11):7274–7277

    CAS  PubMed Central  PubMed  Google Scholar 

  • Čeřovská N, Hoffmeisterová H, Pecenková T, Moravec T, Synková H, Plchová H, Velemínský J (2008) Transient expression of HPV16 E7 peptide (aa 44–60) and HPV16 L2 peptide (aa 108–120) on chimeric potyvirus-like particles using Potato virus X-based vector. Protein Expr Purif 58(1):154–161

    PubMed  Google Scholar 

  • Čeřovská N, Hoffmeisterova H, Moravec T, Plchova H, Folwarczna J, Synkova H, Ryslava H, Ludvikova V, Smahel M (2012) Transient expression of human papillomavirus type 16 L2 epitope fused to N- and C-terminus of coat protein of Potato virus X in plants. J Biosci 37(1):125–133

    PubMed  Google Scholar 

  • Chung HY, Lee HH, Kim KI, Chung HY, Hwang-Bo J, Park JH Sunter G, Kim JB, Shon DH, Kim W, Chung IS (2011) Expression of a recombinant chimeric protein of hepatitis A virus VP1-Fc using a replicating vector based on Beet curly top virus in tobacco leaves and its immunogenicity in mice. Plant Cell Rep 8:1513–1521

    CAS  PubMed  Google Scholar 

  • Cummings JF, Guerrero ML, Moon JE, Waterman P, Nielsen RK, Jefferson S, Gross FL, Hancock K, Katz JM, Yusibov V (2014) Safety and immunogenicity of a plant-produced recombinant monomer hemagglutinin-based influenza vaccine derived from influenza A (H1N1)pdm09 virus: a phase 1 dose-escalation study in healthy adults. Vaccine 32(19):2251–2259

    CAS  PubMed  Google Scholar 

  • da Hora VP, Conceição FR, Dellagostin OA, Doolan DL (2011) Non-toxic derivatives of LT as potent adjuvants. Vaccine 29:1538–1544

    PubMed  Google Scholar 

  • Donson J, Morris-Krsinich BAM, Mullineaux PM, Boulton MI, Davies JW (1984) A putative primer for second-strand DNA synthesis of maize streak virus is virion associated. EMBO J 3:3069–3073

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dougherty WG, Parks TD (1995) Transgenes and gene suppression: telling us something new? Current Opinion in Cell Biology 7:399–405

  • Dugdale B, Mortimer CL, Kato M, James TA, Harding RM, Dale JL (2013) In plant activation: an inducible, hyperexpression platform for recombinant protein production in plants. Plant Cell Online 25(7):2429–2443

    CAS  Google Scholar 

  • Dugdale B, Mortimer CL, Kato M, James TA, Harding RM, Dale JL (2014) Design and construction of an in-plant activation cassette for transgene expression and recombinant protein production in plants. Nat Protoc 9(5):1010–1027

    CAS  PubMed  Google Scholar 

  • Fauquet CM, Briddon RW, Brown JK, Moriones E, Stanley J, Zerbini M, Zhou X (2008) Geminivirus strain demarcation and nomenclature. Arch Virol 153(4):783–821

    CAS  PubMed  Google Scholar 

  • Fernández-Fernández MR, Mouriflo M, Rivera J, Rodriguez F, Plana-Durán J, Garcia JA (2001) Protection of rabbits against rabbit hemorrhagic disease virus by immunization with the VP60 protein expressed in plants with a potyvirus-based vector. Virology 280:283–291

    PubMed  Google Scholar 

  • Fernández-Fernández MR, Martínez-Torrecuadrada JL, Roncal F, Domínguez E, García JA (2002) Identification of immunogenic hot spots within plum pox potyvirus capsid protein for efficient antigen presentation. J Virol 76(24):12646–12653

    PubMed Central  PubMed  Google Scholar 

  • Foged C (2011) Subunit vaccines of the future: the need for safe, customized and optimized particulate delivery systems. Ther Deliv 2:1057–1077

    CAS  PubMed  Google Scholar 

  • Gils M, Kandzia R, Marillonnet S, Klimyuk V, Gleba Y (2005) High-yield production of authentic human growth hormone using a plant virus-based expression system. Plant Biotechnol J 3:613–630

    CAS  PubMed  Google Scholar 

  • Gleba Y, Marillonnet S, Klimyuk V (2004) Engineering viral expression vectors for plants: the ‘full virus’ and the ‘deconstructed virus’ strategies. Curr Opin Plant Biol 7:182–188

    CAS  PubMed  Google Scholar 

  • Gleba Y, Klimyuk V, Marillonnet S (2005) Magnifection—a new platform for expressing recombinant vaccines in plants. Vaccine 23(17–18):2042–2048

    CAS  PubMed  Google Scholar 

  • Gleba Y, Klimyuk V, Marillonnet S (2007) Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol 18:134–141

    CAS  PubMed  Google Scholar 

  • Gleba Y, Tusé D, Giritch A (2014) Plant viral vectors for delivery by Agrobacterium. In: Palmer K, Gleba Y (eds) Plant viral vectors. Springer, New York, pp 155–192

    Google Scholar 

  • Gopinath K, Wellink J, Porta C, Taylor KM, Lomonossoff GP, van Kammen A (2000) Engineering cowpea mosaic virus RNA-2 into a vector to express heterologous proteins in plants. Virology 267:159–173

    CAS  PubMed  Google Scholar 

  • Greco R, Michel M, Guetard D, Cervantes-Gonzalez M, Pelucchi N, Wain-Hobson S, Sala F, Sala M (2007) Production of recombinant HIV-1/HBV virus-like particles in Nicotiana tabacum and Arabidopsis thaliana plants for a bivalent plant-based vaccine. Vaccine 25(49):8228–8240

    CAS  PubMed  Google Scholar 

  • Guo HS, López-Moya JJ, García JA (1998) Susceptibility to recombination rearrangements of a chimeric plum pox potyvirus genome after insertion of a foreign gene. Virus Res 57(2):183–195

    CAS  PubMed  Google Scholar 

  • Gutierrez C, Ramirez-Parra E, Mar Castellano M, Sanz-Burgos AP, Luque A, Missich R (2004) Geminivirus DNA replication and cell cycle interactions. Vet Microbiol 98:111–119

    CAS  PubMed  Google Scholar 

  • Haikonen T, Rajamäki ML, Tian YP, Valkonen JPT (2013) Mutation of a short variable region in HC-Pro protein of Potato virus A affects interactions with microtubule-associated protein and induces necrotic responses in tobacco. Mol Plant Microbe Interact 26:721–733

  • Hanley-Bowdoin L, Elmer JS, Rogers SG (1988) Transient expression of heterologous RNAs using tomato golden mosaic virus. Nucleic Acids Res 16(22):10511–10528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D (1999) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Plant Sci 18(1):71–106

    CAS  Google Scholar 

  • Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S (2013) Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol 11(11):777–788

    CAS  PubMed  Google Scholar 

  • Haq TA, Mason HS, Clements JD, Arntzen CJ (1995) Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 268:714–716

    CAS  PubMed  Google Scholar 

  • Hayes RJ, MacDonald H, Coutts RHA, Buck KW (1988a) Priming of complementary DNA synthesis in vitro by small DNA molecules tightly bound to virion DNA of wheat dwarf virus. J Gen Virol 69:1345–1350

    CAS  Google Scholar 

  • Hayes RJ, Petty ITD, Coutts RH, Buck KW (1988b) Gene amplification and expression in plants by a replicating geminivirus vector. Nature 334:179–182

    CAS  Google Scholar 

  • He J, Peng L, Lai H, Hurtado J, Stahnke J, Chen Q (2014) A plant-produced antigen elicits potent immune responses against West Nile virus in mice. Biomed Res Int 2014:952865

    PubMed Central  PubMed  Google Scholar 

  • Hefferon KL (2012) Plant virus expression vectors set the stage as production platforms for bio pharmaceutical proteins. Virology 433(1):1–6

    CAS  PubMed  Google Scholar 

  • Hefferon KL, Fan Y (2004) Expression of a vaccine protein in a plant cell line using a geminivirus-based replicon system. Vaccine 23(3):404–410

    CAS  PubMed  Google Scholar 

  • Hernández M, Rosas G, Cervantes J, Fragoso G, Rosales-Mendoza S, Sciutto E (2014) Transgenic plants: a 5-year update on oral antipathogen vaccine development. Expert Rev Vaccines 27:1–14

    Google Scholar 

  • Huang Z, Elkin G, Maloney BJ, Beuhner N, Arntzen CJ, Thanavala Y, Mason HS (2005) Virus-like particle expression and assembly in plants: hepatitis B and norwalk viruses. Vaccine 23(15):1851–1858

    CAS  PubMed  Google Scholar 

  • Huang Z, Le Pore K, Elkin G, Thanavala Y, Mason HS (2008) High-yield rapid production of hepatitis B surface antigen in plant leaf by a viral expression system. Plant Biotechnol J 6:202–209

    CAS  Google Scholar 

  • Huang Z, Chen Q, Hjelm B, Arntzen C, Mason H (2009) A DNA replicon system for rapid high-level production of virus-like particles in plants. Biotechnol Bioeng 103(4):706–714

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang Z, Phoolcharoen W, Lai H, Piensook K, Cardineau G, Zeitlin L et al (2010) High-level rapid production of full-size monoclonal antibodies in plants by a single-vector DNA replicon system. Biotechnol Bioeng 106(1):9–17

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim SH, Jang YS (2014) Antigen targeting to M cells for enhancing the efficacy of mucosal vaccines. Exp Mol Med 46:e85

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim KI, Sunter G, Bisaro DM, Chung IS (2007) Improved expression of recombinant GFP using a replicating vector based on beet curly top virus in leaf-disks and infiltrated Nicotiana benthamiana leaves. Plant Mol Biol 64(1–2):103–112

    CAS  PubMed  Google Scholar 

  • Kim SH, Jung DI, Yang IY, Jang SH, Kim J, Truong TT et al (2013) Application of an M-cell-targeting ligand for oral vaccination induces efficient systemic and mucosal immune responses against a viral antigen. Int Immunol 25(11):623–632

    CAS  PubMed  Google Scholar 

  • Kumagai I (1993) Display of foreign protein on a coat protein of filamentous phage–phage antibody. Seikagaku 65(12):1509–1512

    CAS  PubMed  Google Scholar 

  • Kwon KC, Verma D, Singh ND, Herzog R, Daniell H (2013) Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells. Adv Drug Deliv Rev 65:782–799

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lai H, He J, Engle M, Diamond MS, Chen Q (2012) Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce. Plant Biotechnol J 10(1):95–104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Landry N, Ward BJ, Trépanier S, Montomoli E, Dargis M, Lapini G, Vézina LP (2010) Preclinical and clinical development of plant-made virus-like particle vaccine against avian H5N1 influenza. PLoS ONE 5(12):e15559. doi:10.1371/journal.pone.0015559

    CAS  PubMed Central  PubMed  Google Scholar 

  • Langridge W, Dénes B, Fodor I (2010) Cholera toxin B subunit modulation of mucosal vaccines for infectious and autoimmune diseases. Curr Opin Investig Drugs 11:919–928

    CAS  PubMed  Google Scholar 

  • Laufs J, Jupin I, David C, Schumacher S, Heyraud-Nitschke F, Gronenborn B (1995a) Geminivirus replication: genetic and biochemical characterization of Rep protein function, a review. Biochimie 77(10):765–773

    CAS  PubMed  Google Scholar 

  • Laufs J, Traut W, Heyraud F, Matzeit V, Rogers SG, Schell J, Gronenborn B (1995b) In vitro cleavage and joining at the viral origin of replication by the replication initiator protein of tomato yellow leaf curl virus. Proc Natl Acad Sci 92(9):3879–3883

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lazarowitz SG, WuL C, Rogers SG, Elmer JS (1992) Sequence-specific interaction with the viral AL1 protein identifies a geminivirus DNA replication origin. Plant Cell Online 4:799–809

    CAS  Google Scholar 

  • Lindbo JA (2007) TRBO: a high-efficiency tobacco mosaic virus RNA-based overexpression vector. Plant Physiol 145(4):1232–1240

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu L, Grainger J, Canizares MC, Angell SM, Lomonossoff GP (2004) Cowpea mosaic virus RNA-1 acts as an amplicon whose effects can be counteracted by a RNA-2-encoded suppressor of silencing. Virology 323:37–48

    CAS  PubMed  Google Scholar 

  • Lomonossoff GP, Hamilton WD (1999) Cowpea mosaic virus-based vaccines. Curr Top Microbiol Immunol 240:177–189

    CAS  PubMed  Google Scholar 

  • Ludwig C, Wagner R (2007) Virus-like particles-universal molecular toolboxes. Curr Opin Biol Technol 18(6):537–545

    CAS  Google Scholar 

  • Marillonnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotech 23:718–723

  • Marusic C, Rizza P, Lattanzi L, Mancini C, Spada M, Belardelli F, Benvenuto E, Capone I (2001) Chimeric plant virus particles as immunogens for inducing murine and human immune responses against human immunodeficiency virus type 1. J Virol 75(18):8434–8439

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mason HS, Herbst-Kralovetz MM (2012) Plant-derived antigens as mucosal vaccines. Curr Top Microbiol Immunol 354:101–120

    CAS  PubMed  Google Scholar 

  • Mason HS, Lam DM, Arntzen CJ (1992) Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci USA 89(24):11745–11749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mason HS, Ball JM, Shi JJ, Jiang X, Estes MK, Arntzen CJ (1996) Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc Natl Acad Sci USA 93(11):5335–5340

    CAS  PubMed Central  PubMed  Google Scholar 

  • Massa S, Franconi R, Brandi R, Muller A, Mett V et al (2007) Anti-cancer activity of plant-produced HPV16 E7 vaccine. Vaccine 25:3018–3021

    CAS  PubMed  Google Scholar 

  • Matić S, Rinaldi R, Masenga V, Noris E (2011) Efficient production of chimeric human papilloma virus 16 L1 protein bearing the M2e influenza epitope in Nicotiana benthamiana plants. BMC Biotechnol 11:106. doi:10.1186/1472-6750-11-106

    PubMed Central  PubMed  Google Scholar 

  • Matić S, Masenga V, Poli A, Rinaldi R, Milne RG, Vecchiati M, Noris E (2012) Comparative analysis of recombinant human papillomavirus 8 L1 production in plants by a variety of expression systems and purification methods. Plant Biotechnol J 10(4):410–421

    PubMed  Google Scholar 

  • Matzeit V, Schaefer S, Kammann M, Schalk HJ, Schell J, Gronenborn B (1991) Wheat dwarf virus vectors replicate and express foreign genes in cells of monocotyledonous plants. Plant Cell Online 3(3):247–258

    CAS  Google Scholar 

  • McLain L, Porta C, Lomonossoff GP, Durrani Z, Dimmock NJ (1995) Human immunodeficiency virus type 1-neutralizing antibodies raised to a glycoprotein 41 peptide expressed on the surface of a plant virus. AIDS Res Hum Retrovir 11(3):327–334

    CAS  PubMed  Google Scholar 

  • Mett V, Musiychuk K, Bi H, Farrance CE, Horsey A et al (2008) A plant produced influenza subunit vaccine protects ferrets against virus challenge. Influenza Other Respir Viruses 2:33–40

    CAS  PubMed  Google Scholar 

  • Meyer P, Heidmann I, Niedenhof I (1992) The use of African cassava mosaic virus as a vector system for plants. Gene 110(2):213–217

    CAS  PubMed  Google Scholar 

  • Meyers A, Chakauya E, Shephard E, Tanzer FL, Maclean J, Lynch A, Williamson AL, Rybicki EP (2008) Expression of HIV-1 antigens in plants as potential subunit vaccines. BMC Biotechnol 8:53. doi:10.1186/1472-6750-8-53

    PubMed Central  PubMed  Google Scholar 

  • Mor TS, Moon YS, Palmer KE, Mason HS (2003) Geminivirus vectors for high-level expression of foreign proteins in plant cells. Biotechnol Bioeng 81(4):430–437

    CAS  PubMed  Google Scholar 

  • Moyle PM, Toth I (2013) Modern subunit vaccines: development, components, and research opportunities. Chem Med Chem 8:360–376

    CAS  PubMed  Google Scholar 

  • Musiychuk K, Stephenson N, Bi H, Farrance CE, Orozovic G et al (2007) A launch vector for the production of vaccine antigens in plants. Influenza Other Respir Viruses 1:19–25

    CAS  PubMed  Google Scholar 

  • Noris E, Poli A, Cojoca R, Rittà M, Cavallo F et al (2011) A human papillomavirus 8 E7 protein produced in plants is able to trigger the mouse immune system and delay the development of skin lesions. Arch Virol 156:587–595

    CAS  PubMed  Google Scholar 

  • Ohtake S, Arakawa T (2013) Recombinant therapeutic protein vaccines. Protein Pept Lett 20:1324–1344

    CAS  PubMed  Google Scholar 

  • Palmer KE, Thomson JA, Rybicki EP (1999) Generation of maize cell lines containing autonomously replicating maize streak virus-based gene vectors. Arch Virol 144(7):1345–1360

    CAS  PubMed  Google Scholar 

  • Pérez Filgueira DM, Zamorano PI, Domínguez MG, Taboga O, Del Médico Zajac MP, Puntel M, Romera SA, Morris TJ, Borca MV, Sadir AM (2003) Bovine herpes virus gD protein produced in plants using a recombinant Tobacco mosaic virus (TMV) vector possesses authentic antigenicity. Vaccine 21(27–30):4201–4209

    PubMed  Google Scholar 

  • Peterson RK, Arntzen CJ (2004) On risk and plant-based biopharmaceuticals. Trends Biotechnol 22(2):64–66

    CAS  PubMed  Google Scholar 

  • Pniewski T (2012) Is an oral plant-based vaccine against hepatitis B virus possible? Curr Pharm Biotechnol 13(15):2692–2704

    CAS  PubMed  Google Scholar 

  • Ravin NV, Kotlyarov RY, Mardanova ES, Kuprianov VV, Migunov AI, Stepanova LA, Tsybalova LM, Kiselev OI, Skryabin KG (2012) Plant-produced recombinant influenza vaccine based on virus-like HBc particles carrying an extracellular domain of M2 protein. Biochemistry (Mosc) 77(1):33–40

    CAS  Google Scholar 

  • Regnard GL, Halley-Stott RP, Tanzer FL, Hitzeroth II, Rybicki EP (2010) High level protein expression in plants through the use of a novel autonomously replicating geminivirus shuttle vector. Plant Biotechnol J 8(1):38–46

    CAS  PubMed  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

  • Rosales-Mendoza S, Salazar-González JA (2014) Immunological aspects of using plant cells as delivery vehicles for oral vaccines. Expert Rev Vaccines 13:737–749

    CAS  PubMed  Google Scholar 

  • Roy G, Weisburg S, Foy K, Rabindran S, Mett V, Yusibov V (2011) Co-expression of multiple target proteins in plants from a Tobacco mosaic virus vector using a combination of homologous and heterologous subgenomic promoters. Arch Virol 156(11):2057–2061

    CAS  PubMed  Google Scholar 

  • Saejung W, Fujiyama K, Takasaki T, Ito M, Hori K, Malasit P, Watanabe Y, Kurane I, Seki T (2007) Production of dengue 2 envelope domain III in plant using TMV-based vector system. Vaccine 25(36):6646–6654

    CAS  PubMed  Google Scholar 

  • Sainsbury F, Lavoie PO, D’Aoust MA, Vézina LP, Lomonossoff GP (2008) Expression of multiple proteins using full-length and deleted versions of Cowpea mosaic virus RNA-2. Plant Biotechnol J 6:82–92

    CAS  PubMed  Google Scholar 

  • Sainsbury F, Liu L, Lomonossoff GP (2009) Cowpea mosaic virus-based systems for the expression of antigens and antibodies in plants. Methods Mol Biol 483:25–39

    CAS  PubMed  Google Scholar 

  • Santa Cruz S, Chapman S, Roberts AG, Roberts IM, Prior DAM, Oparka KJ (1996) Assembly and movement of a plant virus carrying a green fluorescent protein overcoat. Proc Natl Acad Sci U S A 93:6286–6290

    CAS  Google Scholar 

  • Santi L, Huang Z, Mason H (2006a) Virus-like particles production in green plants. Methods 40(1):66–76

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santi L, Giritch A, Roy CJ, Marillonnet S, Klimyuk V et al (2006b) Protection conferred by recombinant Yersinia pestis antigens produced by a rapid and highly scalable plant expression system. Proc Natl Acad Sci USA 103:861–866

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santi L, Batchelor L, Huang Z, Hjelm B, Kilbourne J et al (2008) An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles. Vaccine 26:1846–1854

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scholthof HB (2006) The Tombusvirus-encoded P19: from irrelevance to elegance. Nat Rev Microbiol 4:405–411

  • Shamloul M, Trusa J, Mett V, Yusibov V (2014) Optimization and utilization of Agrobacterium-mediated transient protein production in Nicotiana. J Vis Exp 86:51204

  • Shen WH, Hohn B (1994) Amplification and expression of the β-glucuronidase gene in maize plants by vectors based on maize streak virus. Plant J 5(2):227–236

    CAS  Google Scholar 

  • Shen WH, Hohn B (1995) Vectors based on maize streak virus can replicate to high copy numbers in maize plants. J Gen Virol 76(4):965–969

    CAS  PubMed  Google Scholar 

  • Shima H, Watanabe T, Fukuda S, Fukuoka SI, Ohara O, Ohno H (2014) A novel mucosal vaccine targeting Peyer’s patch M cells induces protective antigen-specific IgA responses. Int Immunol 26:619–625

  • Shoji Y, Farrance CE, Bautista J, Bi H, Musiychuk K, Horsey A, Park H, Jaje J, Green BJ, Shamloul M, Sharma S, Chichester JA, Mett V, Yusibov V (2011) A plant-based system for rapid production of influenza vaccine antigens. Influenza Other Respir Viruses 6(3):204–210

    PubMed  Google Scholar 

  • Sijen T, Wellink J, Hiriart J-B, van Kammen A (1996) RNA-mediated virus resistance: role of repeated transgenes and delineation of targeted regions. Plant Cell 8:2277–2294

  • Tacket CO (2009) Plant-based oral vaccines: results of human trials. Curr Top Microbiol Immunol 332:103–117

    CAS  PubMed  Google Scholar 

  • Tacket CO, Mason HS, Losonsky G, Estes MK, Levine MM, Arntzen CJ (2000) Human immune responses to a novel Norwalk virus vaccine delivered in transgenic potatoes. J Infect Dis 182(1):302–305

    CAS  PubMed  Google Scholar 

  • Thanavala Y, Yang YF, Lyons P, Mason HS, Arntzen C (1995) Immunogenicity of transgenic plant derived hepatitis B surface antigen. Proc Natl Acad Sci U S A 92(8):3358–3361

    CAS  PubMed Central  PubMed  Google Scholar 

  • Toth RL, Chapman S, Carr F, Santa Cruz S (2001) A novel strategy for the expression of foreign genes from plant virus vectors. FEBS Lett 489(2–3):215–219

    CAS  PubMed  Google Scholar 

  • Turpen TH, Reinl SJ, Charoenvit Y, Hoffman SL, Fallarme V, Grill LK (1995) Malarial epitopes expressed on the surface of recombinant Tobacco mosaic virus. Biotechnology (NY) 13(1):53–57

    CAS  Google Scholar 

  • Uhde K, Fischer R, Commandeur U (2005) Expression of multiple foreign epitopes presented as synthetic antigens on the surface of Potato virus X particles. Arch Virol 150(2):327–340

    CAS  PubMed  Google Scholar 

  • Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses. Proc Natl Acad Sci USA 96:14147–14152

  • Voinnet O, Rivas S, Mestre P, Baulcombe DC (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956

  • Wagner B, Fuchs H, Adhami F, Ma Y, Scheiner O et al (2004) Plant virus expression systems for transient production of recombinant allergens in Nicotiana benthamiana. Methods 32:227–234

    CAS  PubMed  Google Scholar 

  • Ward A, Etessami P, Stanley J (1988) Expression of a bacterial gene in plants mediated by infectious geminivirus DNA. EMBO J 7(6):1583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Webster DE, Wang L, Mulcair M, Ma C, Santi L et al (2009) Production and characterization of an orally immunogenic plasmodium antigen in plants using a virus-based expression system. Plant Biotechnol J 7:846–855

    CAS  PubMed  Google Scholar 

  • Werner S, Breus O, Symonenko Y, Marillonnet S, Gleba Y (2011) High-level recombinant protein expression in transgenic plants by using a double-inducible viral vector. Proc Natl Acad Sci USA 108:14061–14066

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wigdorovitz A, Pérez Filgueira DM, Robertson N, Carrillo C, Sadir AM, Morris TJ, Borca MV (1999) Protection of mice against challenge with Foot and mouth disease virus (FMDV) by immunization with foliar extracts from plants infected with recombinant Tobacco mosaic virus expressing the FMDV structural protein VP1. Virology 264(1):85–91

    CAS  PubMed  Google Scholar 

  • Ye T, Yue Y, Fan X, Dong C, Xu W, Xiong S (2014) M cell-targeting strategy facilitates mucosal immune response and enhances protection against CVB3-induced viral myocarditis elicited by chitosan-DNA vaccine. Vaccine 32:4457–4465

    CAS  PubMed  Google Scholar 

  • Yusibov V, Mett V, Mett V, Davidson C, Musiychuk K, Gilliam S, Farese A, Macvittie T, Mann D (2005) Peptide-based candidate vaccine against Respiratory syncytial virus. Vaccine 23(17–18):2261–2265

    CAS  PubMed  Google Scholar 

  • Yusibov V, Streatfield SJ, Kushnir N (2011) Clinical development of plant-produced recombinant pharmaceuticals: vaccines, antibodies and beyond. Hum Vaccin 7(3):313–321

    CAS  PubMed  Google Scholar 

  • Zhang X, Mason H (2006) Bean Yellow Dwarf Virus replicons for high-level transgene expression in transgenic plants and cell cultures. Biotechnol Bioeng 93:271–279

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bernardo Bañuelos-Hernández or Sergio Rosales-Mendoza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salazar-González, J.A., Bañuelos-Hernández, B. & Rosales-Mendoza, S. Current status of viral expression systems in plants and perspectives for oral vaccines development. Plant Mol Biol 87, 203–217 (2015). https://doi.org/10.1007/s11103-014-0279-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0279-5

Keywords

Navigation