Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Overexpression of a cotton annexin gene, GhAnn1, enhances drought and salt stress tolerance in transgenic cotton

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

This article was retracted on 04 September 2018

Abstract

Plant annexins are members of a diverse, multigene protein family that has been associated with a variety of cellular processes and responses to abiotic stresses. GhAnn1, which encodes a putative annexin protein, was isolated from a cotton (Gossypium hirsutum L. acc 7235) cDNA library. Tissue-specific expression showed that GhAnn1 is expressed at differential levels in all tissues examined and strongly induced by various phytohormones and abiotic stress. In vivo and in vitro subcellular localization suggested that GhAnn1 is located in the plasma membrane. In response to drought and salt stress, transgenic cotton plants overexpressing GhAnn1 showed significantly higher germination rates, longer roots, and more vigorous growth than wild-type plants. In addition, plants overexpressing GhAnn1 had higher total chlorophyll content, lower lipid peroxidation levels, increased peroxidase activities, and higher levels of proline and soluble sugars, all of which contributed to increased salt and drought stress tolerance. However, transgenic cotton plants in which the expression of GhAnn1 was suppressed showed the opposite results compared to the overexpressing plants. These findings demonstrated that GhAnn1 plays an important role in the abiotic stress response, and that overexpression of GhAnn1 in transgenic cotton improves salt and drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adie B, Perez-Perez J, Perez-Perez MM, Godoy M, Sanchez-Serrano JJ, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahuja I, de Vos RC, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15:664–674

    Article  CAS  PubMed  Google Scholar 

  • Andrawis A, Solomon M, Delmer DP (1993) Cotton fiber annexins: a potential role in the regulation of callose synthase. Plant J 3:763–772

    Article  CAS  PubMed  Google Scholar 

  • Anjum F, Yaseen M, Rasool E, Wahid A, Anjum S (2003) Water stress in barley (hordeum vulgare): I. Effect on morpohological characters. Seeds 105:266–271

    Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai L, Zhou Y, Zhang X, Song CP, Cao MQ (2007) Hydrogen peroxide modulates abscisic acid signalling in root growth and development in Arabidopsis. Chin Sci Bull 52:1142–1145

    Article  CAS  Google Scholar 

  • Barbara K, Christian L (2013) Plasma membrane protein ubiquitylation and degradation as determinants of positional growth in plants. J Integr Plant Biol 55(9):809–823

    Article  CAS  Google Scholar 

  • Bates LS, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Battey NH, Blackbourn HD (1993) The control of exocytosis in plant cells. New Phytol 125:307–338

    Article  CAS  Google Scholar 

  • Baucher M, Lowe YO, Vandeputte OM, Bopopi JM, Moussawi J, Vermeersch M, Mol A, El Jaziri M, Homble F, Pérez-Morga D (2011) Ntann12 annexin expression is induced by auxin in tobacco roots. J Exp Bot 62:4055–4065

    Article  PubMed  PubMed Central  Google Scholar 

  • Boustead CM, Smallwood M, Small H, Bowles DJ, Walker JH (1989) Identification of calcium-dependent phospholipid-binding proteins in higher plant cells. FEBS Lett 244:456–460

    Article  CAS  Google Scholar 

  • Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Biol 43:83–116

    Article  CAS  Google Scholar 

  • Breton G, Vazquez-Tello A, Danyluk J, Sarhan F (2000) Two novel intrinsic annexins accumulate in wheat membranes in response to low temperature. Plant Cell Physiol 41:177–184

    Article  CAS  PubMed  Google Scholar 

  • Burgoyne R, Geisow M (1989) The annexin family of calcium-binding proteins. Cell Calcium 10:1–10

    Article  CAS  PubMed  Google Scholar 

  • Cantero A, Barthakur S, Bushart T, Chou S, Morgan R, Fernandez M, Clark G, Roux S (2006) Expression profiling of the Arabidopsis annexin gene family during germination, de-etiolation and abiotic stress. Plant Physiol Biochem 44:13–24

    Article  CAS  PubMed  Google Scholar 

  • Carvalho-Niebel D, Timmers AC, Chabaud M, Defaux-Petras A, Barker DG (2002) The Nod factor-elicited annexin MtAnn1 is preferentially localised at the nuclear periphery in symbiotically activated root tissues of Medicago truncatula. Plant J 32:343–352

    Article  PubMed  Google Scholar 

  • Christmann A, Moes D, Himmelbach A, Yang Y, Tang Y, Grill E (2006) Integration of abscisic acid signalling into plant responses. Plant Biol 8:314–325

    Article  CAS  PubMed  Google Scholar 

  • Chyzhykova O, Palladina T (2005) The role of amino acids and sugars in supporting of osmotic homeostasis in maize seedlings under salinization conditions and treatment with synthetic growth regulators. Ukr Biokhim Zh 78:124–129

    Google Scholar 

  • Clark G, Dauwalder M, Roux S (1994) Immunolocalization of an annexin-like protein in corn. Adv Space Res 14:341–346

    Article  CAS  PubMed  Google Scholar 

  • Clark GB, Morgan RO, Fernandez MP, Roux SJ (2012) Evolutionary adaptation of plant annexins has diversified their molecular structures, interactions and functional roles. New Phytol 196:695–712

    Article  CAS  PubMed  Google Scholar 

  • Creutz CE, Pazoles CJ, Pollard HB (1978) Identification and purification of an adrenal medullary protein (synexin) that causes calcium-dependent aggregation of isolated chromaffin granules. J Biol Chem 253:2858–2866

    PubMed  CAS  Google Scholar 

  • Delmer D, Potikha T (1997) Structures and functions of annexins in plants. Cell Mol Life Sci 53:546–553

    Article  CAS  PubMed  Google Scholar 

  • Devoto A, Turner JG (2003) Regulation of jasmonate-mediated plant responses in Arabidopsis. Ann Bot 92:329–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Divya K, Jami S, Kirti P (2010) Constitutive expression of mustard annexin, AnnBj1 enhances abiotic stress tolerance and fiber quality in cotton under stress. Plant Mol Biol 73:293–308

    Article  CAS  PubMed  Google Scholar 

  • Draeger A, Monastyrskaya K, Babiychuk EB (2011) Plasma membrane repair and cellular damage control: the annexin survival kit. Biochem Pharmacol 81:703–712

    Article  CAS  PubMed  Google Scholar 

  • Dunand C, Crevecoeur M, Penel C (2007) Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytol 174:332–341

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S (2009) Plant drought stress: effects, mechanisms and management. Sustain Agric 29:153–188

    Article  Google Scholar 

  • Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucl Acids Res 39:29–37

    Article  CAS  Google Scholar 

  • Galvez-Valdivieso G, Fryer MJ, Lawson T, Slattery K, Truman W, Smirnoff N, Asami T, Davies WJ, Jones AM, Baker NR (2009) The high light response in Arabidopsis involves ABA signaling between vascular and bundle sheath cells. Plant Cell 21:2143–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerke V, Moss SE (2002) Annexins: from structure to function. Physiol Rev 82:331–371

    Article  CAS  PubMed  Google Scholar 

  • Goda H, Sasaki E, Akiyama K, Maruyama-Nakashita A, Nakabayashi K, Li W, Ogawa M, Yamauchi Y, Preston J, Aoki K (2008) The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant J 55:526–542

    Article  CAS  PubMed  Google Scholar 

  • Gorecka KM, Konopka-Postupolska D, Hennig J, Buchet R, Pikula S (2005) Peroxidase activity of annexin 1 from Arabidopsis thaliana. Biochem Biophys Res Commun 336:868–875

    Article  CAS  PubMed  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Ann Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • He YJ, Guo WZ, Zhang TZ (2008) Molecular cloning, characterization and mapping of GhLipase gene in Gossypium hirsutum. J Agric Biotechnol 17:84–86

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hofmann A, Delmer DP, Wlodawer A (2003) The crystal structure of annexin Gh1 from Gossypium hirsutum reveals an unusual S3 cluster. Eur J Biochem 270:2557–2564

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Wang J, Zhang L, Zuo K (2013) A cotton annexin protein AnxGb6 regulates fiber elongation through its interaction with actin1. PLoS One 8:e66160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI (2010) Earlyabscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Gene Dev 24:1695–1708

  • Huh SM, Noh EK, Kim HG, Jeon BW, Bae K, Hu HC, Kwak JM, Park OK (2010) Arabidopsis annexins AnnAt1 and AnnAt4 interact with each other and regulate drought and salt stress responses. Plant Cell Physiol 51:1499–1514

    Article  CAS  PubMed  Google Scholar 

  • Hung SH, Yu CW, Lin CH (2005) Hydrogen peroxide functions as a stress signal in plants. Bot Bull Acad Sin 46:1–10

    CAS  Google Scholar 

  • Jami SK, Dalal A, Divya K, Kirti P (2009) Molecular cloning and characterization of five annexin genes from Indian mustard (Brassica juncea L. Czern and Coss). Plant Physiol Biochem 47:977–990

    Article  CAS  PubMed  Google Scholar 

  • Jami SK, Clark GB, Ayele BT, Roux SJ, Kirti P (2012) Identification and characterization of annexin gene family in rice. Plant Cell Rep 31:813–825

    Article  CAS  PubMed  Google Scholar 

  • Jaspers P, Brosché M, Overmyer K, Kangasjärvi J (2010) The transcription factor interacting protein RCD1 contains a novel conserved domain. Plant Signal Behav 5:78–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Zhang T (2003) Extraction of total RNA in cotton tissues with CTAB-acidic phenolic method. Cotton Sci 15:166–167

    Google Scholar 

  • Kerepesi I, Galiba G (2000) Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci 40:482–487

    Article  CAS  Google Scholar 

  • Ketting RF, Tijsterman M, Plasterk RH (2006) Cosuppression in C. elegans. CSH Protoc 1. doi:10.1101/pdb.prot4318

  • Kiba T, Naitou T, Koizumi N, Yamashino T, Sakakibara H, Mizuno T (2005) Combinatorial microarray analysis revealing Arabidopsis genes implicated in cytokinin responses through the His → Asp phosphorelay circuitry. Plant Cell Physiol 46:339–355

    Article  CAS  PubMed  Google Scholar 

  • Kohel R, Richmond T, Lewis C (1970) Texas marker-1. Description of a genetic standard for Gossypium hirsutum L. Crop Sci 10:670–671

    Article  Google Scholar 

  • Konopka-Postupolska D (2007) Annexins: putative linkers in dynamic membrane-cytoskeleton interactions in plant cells. Protoplasma 230:203–215

    Article  CAS  PubMed  Google Scholar 

  • Konopka-Postupolska D, Clark G, Goch G, Debski J, Floras K, Cantero A, Fijolek B, Roux S, Hennig J (2009) The role of annexin 1 in drought stress in Arabidopsis. Plant Physiol 150:1394–1410

    Article  PubMed  PubMed Central  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laohavisit A, Davies JM (2011) Annexins. New Phytol 189:40–53

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Lee EJ, Yang EJ, Lee JE, Park AR, Song WH, Park OK (2004) Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis. Plant Cell 16:1378–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222

    Article  CAS  PubMed  Google Scholar 

  • Li FF, Wu SJ, Chen TZ, Zhang J, Wang HH, Guo WZ, Zhang TZ (2009) Agrobacterium-mediated co-transformation of multiple genes in upland cotton. Plant Cell Tissue Organ 97:225–235

    Article  CAS  Google Scholar 

  • Li B, Li DD, Zhang J, Xia H, Wang XL, Li Y, Li XB (2013) Cotton AnnGh3 encoding an annexin protein is preferentially expressed in fibers and promotes initiation and elongation of leaf trichomes in transgenic Arabidopsis. J Integr Plant Biol 55:902–916

    PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆Ct method. Method 25:402–408

    Article  CAS  Google Scholar 

  • Lu Y, Ouyang B, Zhang J, Wang T, Lu C, Han Q, Zhao S, Ye Z, Li H (2012) Genomic organization, phylogenetic comparison and expression profiles of annexin gene family in tomato (Solanum lycopersicum). Gene 499:14–24

    Article  CAS  PubMed  Google Scholar 

  • Massacci A, Nabiev S, Pietrosanti L, Nematov S, Chernikova T, Thor K, Leipner J (2008) Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiol Biochem 46:189–195

    Article  CAS  PubMed  Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  • Monastyrskaya K, Babiychuk EB, Draeger A (2009) The annexins: spatial and temporal coordination of signaling events during cellular stress. Cell Mol Life Sci 66:2623–2642

    Article  CAS  PubMed  Google Scholar 

  • Mortimer JC, Laohavisit A, Macpherson N, Webb A, Brownlee C, Battey NH, Davies JM (2008) Annexins: multifunctional components of growth and adaptation. J Exp Bot 59:533–544

    Article  CAS  PubMed  Google Scholar 

  • Moss SE, Morgan RO (2004) The annexins. Genome Biol 5:219

    Article  PubMed  PubMed Central  Google Scholar 

  • Mullineaux PM, Baker NR (2010) Oxidative stress: antagonistic signaling for acclimation or cell death? Plant Physiol 154:521–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Biol 49:249–279

    Article  CAS  Google Scholar 

  • Paoletti F, Aldinucci D, Mocali A, Caparrini A (1986) A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Anal Biochem 154:536–541

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Brubaker C, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Bio Rep 11:122–127

  • Pitzschke A, Hirt H (2009) Disentangling the complexity of mitogenactivated protein kinases and reactive oxygen species signaling. Plant Physiol 149:606–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian SY, Huang JQ, Peng YJ, Zhou BL, Ying MC, Shen DZ, Liu GL, Hu TX, Xu YJ, Gu LM, Ni WC, Chen S (1992) Studies on the hybrid of G. hirsutum L and G. anomalum Wawr. & Peyr. and application in breeding. Sci Agric Sin 25:44–51

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  PubMed  Google Scholar 

  • Richards SL, Laohavisit A, Mortimer JC, Shabala L, Swarbreck SM, Shabala S, Davies JM (2014a) Annexin 1 regulates the H2O2-induced calcium signaturein Arabidopsis thaliana roots. Plant J 77:136–145

    Article  CAS  PubMed  Google Scholar 

  • Richards SL, Laohavisit A, Mortimer JC, Shabala L, Swarbreck SM, Shabala S, Davies JM (2014b) Annexin 1 regulates the H2O2-induced calcium signaturein Arabidopsis thaliana roots. Plant J 77:136–145

    Article  CAS  PubMed  Google Scholar 

  • Sairam R, Srivastava G, Agarwal S, Meena R (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plantarum 49:85–91

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Santner A, Estelle M (2010) The ubiquitin-proteasome system regulates plant hormone signaling. Plant J 61:1029–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schapire AL, Valpuesta V, Botella MA (2009) Plasma membrane repair in plants. Trends Plant Sci 14:645–652

    Article  CAS  PubMed  Google Scholar 

  • Shang X, Sun J, He Y, Zhao W, Li Q, Zhou F, Chen B, Cheng H, Zhou R (2007) Identification and predominant expression of annexin A2 in epithelial-type cells of the rice field eel. J Cell Biochem 101:600–608

    Article  CAS  PubMed  Google Scholar 

  • Shin H, Brown RM (1999) GTPase activity and biochemical characterization of a recombinant cotton fiber annexin. Plant Physiol 119:925–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth DR (1997) Gene silencing: cosuppression at a distance. Curr Biol 7:793–796

    Article  Google Scholar 

  • Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025

    Article  CAS  PubMed  Google Scholar 

  • Sravan K, Greg BC, Swathi AT, Craig H, Stanley JR, Pulugurtha BK (2008) Ectopic expression of an annexin from Brassica juncea confers tolerance to abiotic and biotic stress treatments in transgenic tobacco. Plant Physiol Biochem 46:1019–1030

    Article  CAS  Google Scholar 

  • Sun Y, Yin J, Cao H, Li C, Kang L, Ge F (2011) Elevated CO2 influences nematode-induced defense responses of tomato genotypes differing in the JA pathway. PLoS One 6:e19751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talukdar T, Gorecka KM, de Carvalho-Niebel F, Downie JA, Cullimore J, Pikula S (2009) Annexins-calcium-and membrane-binding proteins in the plant kingdom. Acta Biochim Pol 56:199–210

    PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang WX, He YH, Tu LL, Wang MJ, Li Y, Ruan YL, Zhang XL (2014) Down-regulating annexin gene GhAnn2 inhibits cotton fiber elongation and decreases Ca2+ influx at the cell apex. Plant Mol Biol 85:613–625

    Article  CAS  PubMed  Google Scholar 

  • Thonat C, Mathieu C, Crevecoeur M, Penel C, Gaspar T, Boyer N (1997) Effects of a mechanical stimulation on localization of annexin-like proteins in Bryonia dioica internodes. Plant Physiol 114:981–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14:310–317

    Article  CAS  PubMed  Google Scholar 

  • Tsukagoshi H, Busch W, Benfey PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143:606–616

    Article  CAS  PubMed  Google Scholar 

  • Vandeputte O, Lowe YO, Burssens S, Van Raemdonck D, Hutin D, Boniver D, Geelen D, El Jaziri M, Baucher M (2007) The tobacco Ntann12 gene, encoding an annexin, is induced upon Rhodoccocus fascians infection and during leafy gall development. Mol Plant Pathol 8:185–194

    Article  CAS  PubMed  Google Scholar 

  • Wang LK, Niu XW, Lv YH, Zhang TZ, Guo WZ (2010) Molecular cloning and localization of a novel cotton annexin gene expressed preferentially during fiber development. Mol Biol Rep 37:3327–3334

    Article  CAS  PubMed  Google Scholar 

  • Xin Z, Zhao Y, Zheng ZL (2005) Transcriptome analysis reveals specific modulation of abscisic acid signaling by ROP10 small GTPase in Arabidopsis. Plant Physiol 139:1350–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Duan J, Wang XM, Zhang HM, Duan MX, Liu JY (2011) Characterization of a novel annexin gene from cotton (Gossypium hirsutum cv CRI 35) and antioxidative role of its recombinant protein. J Integr Plant Biol 53:347–357

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Ann Rev Plant Biol 53:247

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This program was financially supported in part by National Science Foundation in China (31171590), the National Transgenic Program (2011ZX08005-004), Jiangsu Agriculture Science and Technology Innovation Fund (CX(14)2065), and a project funded by PAPD-JHEI and JCIC-MCP.

Conflict of interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangzhen Guo.

Additional information

The authors are retracting this article because irregularities were involved in the reuse of stomatal images in Figure 9. In details, 1) stomatal image in 0d:S-1 (A) is the same as that in 3As-1 (A); 2) 0d:As-1 (A) was reused in mock As-1 and in mock 3As-1(D); 3) 20d:S-1 (A) and 20d:S-2 (A) were reused in ABA:As-1(D) and ABA:As-2 (D), respectively.

The authors regret any inconvenience or trouble caused by the original publication and apologize sincerely to the readers, reviewers, and editors of Plant Molecular Biology. All authors agree to this retraction.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2014_260_MOESM1_ESM.tif

Intron–exon structures of 14 annexin genes from G. raimondii. The scale bar represents 0.2 amino acid substitutions per site. Gene structures were drawn using the online tool Gene Structure Display Server (http://gsds.cbi.pku.edu.cn/). (TIFF 90 kb)

11103_2014_260_MOESM2_ESM.tif

Characterization of transgenic cotton plants. A: PCR analysis of GhAnn1 transgenic plants using NPTII-specific and promoter-gene primers, respectively. M: marker DL2000. P: positive control. WT, wild-type. a - GhAnn1 gene sense vector. b - GhAnn1 gene antisense vector. c - GhAnn1 3′ fragment antisense vector. B: PCR analysis of the NPTII gene. C: Southern blot analysis of T3 transgenic cotton plants for transgene copy number using the restriction enzyme EcoRI, which has a single recognition site in the T-DNA. 1 to 8 - GhAnn1 overexpressing transgenic lines 1 to 8. (TIFF 366 kb)

Supplementary material 3 (DOCX 26 kb)

Supplementary material 4 (DOCX 24 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Li, S., Yang, S. et al. RETRACTED ARTICLE: Overexpression of a cotton annexin gene, GhAnn1, enhances drought and salt stress tolerance in transgenic cotton. Plant Mol Biol 87, 47–67 (2015). https://doi.org/10.1007/s11103-014-0260-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0260-3

Keywords

Navigation