Plant Molecular Biology

, Volume 86, Issue 4–5, pp 395–407 | Cite as

The pineapple AcMADS1 promoter confers high level expression in tomato and Arabidopsis flowering and fruiting tissues, but AcMADS1 does not complement the tomato LeMADS-RIN (rin) mutant

  • Richard L. Moyle
  • Jonni H. Koia
  • Julia Vrebalov
  • James Giovannoni
  • Jose R. BotellaEmail author


A previous EST study identified a MADS box transcription factor coding sequence, AcMADS1, that is strongly induced during non-climacteric pineapple fruit ripening. Phylogenetic analyses place the AcMADS1 protein in the same superclade as LeMADS-RIN, a master regulator of fruit ripening upstream of ethylene in climacteric tomato. LeMADS-RIN has been proposed to be a global ripening regulator shared among climacteric and non-climacteric species, although few functional homologs of LeMADS-RIN have been identified in non-climacteric species. AcMADS1 shares 67 % protein sequence similarity and a similar expression pattern in ripening fruits as LeMADS-RIN. However, in this study AcMADS1 was not able to complement the tomato rin mutant phenotype, indicating AcMADS1 may not be a functionally conserved homolog of LeMADS-RIN or has sufficiently diverged to be unable to act in the context of the tomato network of interacting proteins. The AcMADS1 promoter directed strong expression of the GUS reporter gene to fruits and developing floral organs in tomato and Arabidopsis thaliana, suggesting AcMADS1 may play a role in flower development as well as fruitlet ripening. The AcMADS1 promoter provides a useful molecular tool for directing transgene expression, particularly where up-regulation in developing flowers and fruits is desirable.


Ananas comosus Fruit ripening Promoter analysis Beta-glucuronidase MADS box transcription factor 



US-Israel BARD projects IS-4223-09C and IS-4371-10C provided support for this project.

Supplementary material

11103_2014_236_MOESM1_ESM.pptx (465 kb)
Supplementary material Fig. 1 Putative cis-acting elements identified in the AcMADS1 promoter sequence. A signal scan search of the Plant Cis-acting Element Database (PLACE) identified the following motifs: GAGA8HVBKN3 (homeobox domain), MNF1ZMPPC1 (C4 PEPC element), CARGCW8GAT (MADS SEPELLATA AGL15 element), ANAERO2CONSENSUS (anaerobic fermentation related motif), WBOXHVISO1 (sugar response element), ABREMOTIFAOSOSEM (abscisic acid response element), CMSRE1IBSPOA (sugar and sucrose induced motif), ASF1MOTIFCAMV stress-auxin related motif), B2GMAUX28 (auxin response), SP8BFIBSP8BIB (alpha amylase related motif), IBOXCORE (light regulated motif), BIHD1OS (disease resistance element), EECCRCAH1 (CO2-responsive element), SITEIIATCYTC (oxidative phosphorylation related element). The putative TATA box and ATG translation initiation site are boxed. Numbering is relative to the ATG translation initiation site (PPTX 465 kb)
11103_2014_236_MOESM2_ESM.xlsx (19 kb)
Supplementary material Fig. 2 Comparison of cis-acting elements identified in the AcMADS1 and LeMADS-RIN promoter sequences. A signal scan search of the Plant Cis-acting Element Database (PLACE) identified the copy number of known elements present within each promoter sequence (XLSX 18 kb)
11103_2014_236_MOESM3_ESM.docx (16 kb)
Supplementary material Fig. 3 Homology relations of AcMADS1 and other MADS-box proteins. Homology table includes full length sequences of pineapple AcMADS1 (CO7331330.1), tomato MADS-RIN (AF448522.1), pepper MADS-RIN (DQ999998.1), strawberry FvMADS-9 (AF484683.1), tomato TDR5 (X60480.1), tomato MADS1 (AY294329.1), grape API-like (XM_002263374.1), grape MADS2 (AF373601.1), strawberry MADS1-like (GQ398009.1), banana MADS1 (EU869307.1), banana MADS3 (EU869308.1), citrus CiSEP1 (AB329715.1), apple PI (AJ291490.1), Arabidopsis AGL6 (NM_130127.1), peach MADS2 (AAZ16241.1) (DOCX 16 kb)


  1. Aharoni A, O’Connell AP (2002) Gene expression analysis of strawberry achene and receptacle maturation using DNA microarrays. J Exp Bot 53:2073–2087PubMedCrossRefGoogle Scholar
  2. Alonso JM, Chamarro J, Granell A (1995) Evidence for the involvement of ethylene in the expression of specific RNAs during maturation of the orange, a non-climacteric fruit. Plant Mol Biol 29:385–390PubMedCrossRefGoogle Scholar
  3. Binzel ML, Bageshwar S, Giovannoni JG (2007) Functional characterization of a RIN-MADS gene from Cucumis melo. Paper presented at the Plant and Animal Genomes XV Conference, San DiegoGoogle Scholar
  4. Blume B, Grierson D (1997) Expression of ACC oxidase promoter-GUS fusions in tomato and Nicotiana plumbaginifolia regulated by developmental and environmental stimuli. Plant J 12:731–746PubMedCrossRefGoogle Scholar
  5. Bongue-Bartelsman M, O’Neill SD, Tong Y, Yoder JI (1994) Characterization of the gene encoding dihydroflavonol 4-reductase in tomato. Gene 138:153–157PubMedCrossRefGoogle Scholar
  6. Busi MV, Bustamante C, D’Angelo C, Hidalgo-Cuevas M, Boggio SB, Valle EM, Zabaleta E (2003) MADS-box genes expressed during tomato seed and fruit development. Plant Mol Biol 52:801–815PubMedCrossRefGoogle Scholar
  7. Cazzonelli CI, Cavallaro AS, Botella JR (1998) Cloning and characterization of ripening-induced ethylene biosynthetic genes from non-climacteric pineapple (Ananas comosus) fruits. Aust J Plant Physiol 25:513–518CrossRefGoogle Scholar
  8. Chervin C, El-Kereamy A, Roustan J-P, Latché A, Lamon J, Bouzayen M (2004) Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci 167:1301–1305. doi: 10.1016/j.plantsci.2004.06.026 CrossRefGoogle Scholar
  9. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMedCrossRefGoogle Scholar
  10. de la Garza RD, Quinlivan EP, Klaus SM, Basset GJ, Gregory JF 3rd, Hanson AD (2004) Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis. Proc Natl Acad Sci USA 101:13720–13725. doi: 10.1073/pnas.0404208101 CrossRefPubMedCentralGoogle Scholar
  11. Dereeper A et al (2008) robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469. doi: 10.1093/nar/gkn180 PubMedCrossRefPubMedCentralGoogle Scholar
  12. Elitzur T, Vrebalov J, Giovannoni JJ, Goldschmidt EE, Friedman H (2010) The regulation of MADS-box gene expression during ripening of banana and their regulatory interaction with ethylene. J Exp Bot 61:1523–1535. doi: 10.1093/jxb/erq017 PubMedCrossRefPubMedCentralGoogle Scholar
  13. Elmayan T, Vaucheret H (1996) Expression of single copies of a strongly expressed 35S transgene can be silenced post-transcriptionally. Plant J 9:787–797CrossRefGoogle Scholar
  14. Fei Z et al (2004) Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant J 40:47–59. doi: 10.1111/j.1365-313X.2004.02188.x PubMedCrossRefGoogle Scholar
  15. Fujisawa M, Nakano T, Ito Y (2011) Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation. BMC Plant Biol 11:26. doi: 10.1186/1471-2229-11-26 PubMedCrossRefPubMedCentralGoogle Scholar
  16. Fujisawa M, Nakano T, Shima Y, Ito Y (2013) A large-scale identification of direct targets of the tomato MADS box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening. Plant Cell 25:371–386. doi: 10.1105/tpc.112.108118 PubMedCrossRefPubMedCentralGoogle Scholar
  17. Giovannoni J (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–749PubMedCrossRefGoogle Scholar
  18. Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16(Suppl):S170–S180. doi: 10.1105/tpc.019158 PubMedCrossRefPubMedCentralGoogle Scholar
  19. Hepworth SR, Valverde F, Ravenscroft D, Mouradov A, Coupland G (2002) Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via seperate promoter motifs. EMBO J 21:4327–4337PubMedCrossRefPubMedCentralGoogle Scholar
  20. Herner RC, Sink KC (1973) Ethylene production and respiratory behavior of the rin tomato mutant. Plant Physiol 52:38–42PubMedCrossRefPubMedCentralGoogle Scholar
  21. Higo K, Ugawa Y, Iwamoto M, Korenga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300PubMedCrossRefPubMedCentralGoogle Scholar
  22. Hofig KP, Moyle RL, Putterill J, Walter C (2003) Expression analysis of four Pinus radiata male cone promoters in the heterologous host Arabidopsis. Planta 217:858–867. doi: 10.1007/s00425-003-1057-9 PubMedCrossRefGoogle Scholar
  23. Horn R et al (2005) Candidate gene database and transcript map for peach, a model species for fruit trees. Theor Appl Genet 110:1419–1428. doi: 10.1007/s00122-005-1968-x PubMedCrossRefGoogle Scholar
  24. Immink RGH et al (2009) SEPALLATA3: the ‘glue’ for MADS box transcription factor complex formation. Gen Biol 10:R24. doi: 10.1186/gb-2009-10-2-r24 CrossRefGoogle Scholar
  25. Ito Y et al (2008) DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN. Plant J 55:212–223. doi: 10.1111/j.1365-313X.2008.03491.x PubMedCrossRefGoogle Scholar
  26. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: B-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedPubMedCentralGoogle Scholar
  27. Kaufmann K, Muiño JM, Jauregui R, Airoldi CA, Smaczniak C, Krajewski P, Angenent GC (2009) Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol 7:854–875. doi: 10.1371/journal.pbio.1000090 CrossRefGoogle Scholar
  28. Kitagawa M et al (2006) Ethylene biosynthesis regulation in tomato fruit from the F1 hybrid of the ripening inhibitor (rin) mutant. Biosci Biotechnol Biochem 70:1769–1772. doi: 10.1271/bbb.50611 PubMedCrossRefGoogle Scholar
  29. Klee HJ, Giovannoni JJ (2011) Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet 45:41–59. doi: 10.1146/annurev-genet-110410-132507 PubMedCrossRefGoogle Scholar
  30. Koia JH, Moyle RL, Botella JR (2012) Microarray analysis of gene expression profiles in ripening pineapple fruits. BMC Plant Biol 12:240. doi: 10.1186/1471-2229-12-240 PubMedCrossRefPubMedCentralGoogle Scholar
  31. Koia J, Moyle R, Hendry C, Lim L, Botella JR (2013) Pineapple translation factor SUI1 and ribosomal protein L36 promoters drive constitutive transgene expression patterns in Arabidopsis thaliana. Plant Mol Biol 81:327–336. doi: 10.1007/s11103-012-0002-3 PubMedCrossRefGoogle Scholar
  32. Koo SC et al (2010) Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box Gene AGAMOUS-LIKE6. Plant J 62:807–816. doi: 10.1111/j.1365-313X.2010.04192.x PubMedCrossRefGoogle Scholar
  33. Kurokawa N, Hirai T, Takayama M, Hiwasa-Tanase K, Ezura H (2013) An E8 promoter-HSP terminator cassette promotes the high-level accumulation of recombinant protein predominantly in transgenic tomato fruits: a case study of miraculin. Plant Cell Rep 32:529–536. doi: 10.1007/s00299-013-1384-7 PubMedCrossRefGoogle Scholar
  34. Lanahan MB, Yen H-C, Giovannoni JJ, Klee HJ (1994) The Never ripe mutation blocks ethylene perception in tomato. Plant Cell 6:521–530PubMedCrossRefPubMedCentralGoogle Scholar
  35. Lewinsohn E et al (2001) Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol 127:1256–1265PubMedCrossRefPubMedCentralGoogle Scholar
  36. Ma H, Yanofsky MF, Meyerowitz EM (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev 5:484–495. doi: 10.1101/gad.5.3.484 PubMedCrossRefGoogle Scholar
  37. Malcomber ST, Kellogg EA (2005) SEPALLATA gene diversification: brave new whorls. Trends Plant Sci 10:427–435. doi: 10.1016/j.tplants.2005.07.008 PubMedCrossRefGoogle Scholar
  38. Martel C, Vrebalov J, Tafelmeyer P, Giovannoni JJ (2011) The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiol 157:1568–1579. doi: 10.1104/pp.111.181107 PubMedCrossRefPubMedCentralGoogle Scholar
  39. Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol 20:613–618. doi: 10.1038/nbt0602-613 PubMedCrossRefGoogle Scholar
  40. Mellway RD, Lund ST (2013) Interaction analysis of grapevine MIKC(c)-type MADS transcription factors and heterologous expression of putative veraison regulators in tomato. J Plant Physiol 170:1424–1433. doi: 10.1016/j.jplph.2013.05.010 PubMedCrossRefGoogle Scholar
  41. Mizzotti C, Mendes MA, Caporali E, Schnittger A, Kater MM, Battaglia R, Colombo L (2012) The MADS box genes SEEDSTICK and ARABIDOPSIS Bsister play a maternal role in fertilization and seed development. Plant J 70:409–420. doi: 10.1111/j.1365-313X.2011.04878.x PubMedCrossRefGoogle Scholar
  42. Moore S, Vrebalov J, Payton P, Giovannoni J (2002) Use of genomic tools to isolate key ripening genes and analyse fruit maturation in tomato. J Exp Bot 53:2023–2030PubMedCrossRefGoogle Scholar
  43. Morikami A, Matsunaga R, Tanaka Y, Suzuki S, Mano S, Nakamura K (2005) Two cis-acting regulatory elements are involved in the sucrose-inducible expression of the sporamin gene promoter from sweet potato in transgenic tobacco. Mol Genet Genomics 272:690–699. doi: 10.1007/s00438-004-1100-y PubMedCrossRefGoogle Scholar
  44. Moyle RL, Birch RG (2013a) Diversity of sequences and expression patterns among alleles of a sugarcane loading stem gene. Theor Appl Genet 126:1775–1782. doi: 10.1007/s00122-013-2091-z PubMedCrossRefGoogle Scholar
  45. Moyle RL, Birch RG (2013b) Sugarcane loading stem gene promoters drive transgene expression preferentially in the stem. Plant Mol Biol 82:51–58. doi: 10.1007/s11103-013-0034-3 PubMedCrossRefGoogle Scholar
  46. Moyle RL, Botella JR (2013) EST sequencing of Meloidogyne javanica infected pineapple root tissues reveals changes in gene expression during root-knot nematode induced gall formation. Trop Plant Biol 82(2):43–52. doi: 10.1007/s12042-014-9136-6
  47. Moyle R, Moody J, Phillips L, Walter C, Wagner A (2002) Isolation and characterization of a Pinus radiata lignin biosynthesis-related O-methyltransferase promoter. Plant Cell Rep 20:1052–1060. doi: 10.1007/s00299-002-0457-9 CrossRefGoogle Scholar
  48. Moyle RL, Crowe ML, Ripi-Koia J, Fairbairn DJ, Botella JR (2005a) Pineapple DB: an online pineapple bioinformatics resource. BMC Plant Biol 5:21. doi: 10.1186/1471-2229-5-21 PubMedCrossRefPubMedCentralGoogle Scholar
  49. Moyle RL, Fairbairn DJ, Ripi J, Crowe ML, Botella JR (2005b) Developing pineapple fruit has a small transcriptome dominated by metallothionein. J Exp Bot 56:101–112. doi: 10.1093/jxb/eri015 PubMedGoogle Scholar
  50. Moyle R, Ripi J, Fairbairn DJ, Crowe M, Botella JR (2006) The pineapple EST sequencing and microarray project. Acta Hort 702:47–50Google Scholar
  51. Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203PubMedCrossRefGoogle Scholar
  52. Petsch KA, Mylne J, Botella JR (2005) Cosuppression of eukaryotic release factor 1-1 in Arabidopsis affects cell elongation and radial cell division. Plant Physiol 139:115–126. doi: 10.1104/pp.105.062695 PubMedCrossRefPubMedCentralGoogle Scholar
  53. Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell Dev Biol Plant 40:1–22. doi: 10.1079/Ivp2003477 CrossRefGoogle Scholar
  54. Prestridge DS (1991) SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. Comput Appl Biosci 7:203–206PubMedGoogle Scholar
  55. Qin G, Wang Y, Cao B, Wang W, Tian S (2012) Unraveling the regulatory network of the MADS box transcription factor RIN in fruit ripening. Plant J 70:243–255. doi: 10.1111/j.1365-313X.2011.04861.x PubMedCrossRefGoogle Scholar
  56. Ramirez YJ, Tasciotti E, Gutierrez-Ortega A, Donayre Torres AJ, Olivera Flores MT, Giacca M, Gomez Lim MA (2007) Fruit-specific expression of the human immunodeficiency virus type 1 tat gene in tomato plants and its immunogenic potential in mice. Clin Vaccine Immunol 14:685–692. doi: 10.1128/CVI.00028-07 PubMedCrossRefPubMedCentralGoogle Scholar
  57. Saedler H, Becker A, Winter K-U, Kirchner C, Theißen G (2001) MADS-box genes are involved in floral development and evolution. Acta Biochim Pol 48:351–358PubMedGoogle Scholar
  58. Santi L et al (2003) The GA octodinucleotide repeat binding factor BBR participates in the transcriptional regulation of the homeobox gene Bkn3. Plant J 34:813–826PubMedCrossRefGoogle Scholar
  59. Sato S et al (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641. doi: 10.1038/Nature11119 CrossRefGoogle Scholar
  60. Seymour GB et al (2011) A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria x ananassa Duch.) fruit, a non-climacteric tissue. J Exp Bot 62:1179–1188. doi: 10.1093/jxb/erq360 PubMedCrossRefPubMedCentralGoogle Scholar
  61. Shepherd CT, Lauter ANM, Scott MP (2009) Determination of transgene copy number by real-time quantitative PCR. Methods Mol Biol 526:129–134. doi: 10.1007/978-1-59745-494-0_11 PubMedCrossRefGoogle Scholar
  62. Shore P, Sharrocks AD (1995) The MADS-box family of transcription factors. Eur J Biochem 229:1–13PubMedCrossRefGoogle Scholar
  63. Sun C, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell 15:2076–2092PubMedCrossRefPubMedCentralGoogle Scholar
  64. Tang W, Perry SE (2003) Binding site selection for the plant MADS domain protein AGL15: an in vitro and in vivo study. J Biol Chem 278:28154–28159. doi: 10.1074/jbc.M212976200 PubMedCrossRefGoogle Scholar
  65. Vrebalov J et al (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343–346PubMedCrossRefGoogle Scholar
  66. Winichayakul S, Moyle RL, Coupe SA, Davies KM, Farnden KJF (2004a) Analysis of the asparagus (Asparagus officinalis) asparagine synthetase gene promoter identifies evolutionarily conserved cis-regulatory elements that mediate Suc-repression. Funct Plant Biol 31:63–72. doi: 10.1071/Fp03179 CrossRefGoogle Scholar
  67. Winichayakul S, Moyle RL, Ryan DJ, Farnden KJF, Davies KM, Coupe SA (2004b) Distinct cis-elements in the Asparagus officinalis asparagine synthetase promoter respond to carbohydrate and senescence signals. Funct Plant Biol 31:573–582. doi: 10.1071/Fp03198 CrossRefGoogle Scholar
  68. Yen H-C, Lee S, Tanksley SD, Lanahan MB, Klee HJ, Giovannoni JJ (1995) The tomato Never-ripe locus regulates ethylene-inducible gene expression and is linked to a homolog of the Arabidopsis ETR7 gene. Plant Physiol 107:1343–1353PubMedCrossRefPubMedCentralGoogle Scholar
  69. Yoo SK, Wu X, Lee JS, Ahn JH (2011) AGAMOUS-LIKE 6 is a floral promoter that negatively regulates the FLC/MAF clade genes and positively regulates FT in Arabidopsis. Plant J 65:62–76. doi: 10.1111/j.1365-313X.2010.04402.x PubMedCrossRefGoogle Scholar
  70. Zhong S et al (2013) Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotechnol 31:154–159. doi: 10.1038/nbt.2462 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Richard L. Moyle
    • 1
  • Jonni H. Koia
    • 1
  • Julia Vrebalov
    • 2
  • James Giovannoni
    • 2
  • Jose R. Botella
    • 1
    Email author
  1. 1.Plant Genetic Engineering Laboratory, School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneAustralia
  2. 2.US Department of AgricultureBoyce Thompson Institute for Plant ResearchIthacaUSA

Personalised recommendations