Plant Molecular Biology

, Volume 86, Issue 1–2, pp 125–137 | Cite as

Expression of a gene encoding a rice RING zinc-finger protein, OsRZFP34, enhances stomata opening

  • Kuo-Hsuan Hsu
  • Chia-Chin Liu
  • Shaw-Jye Wu
  • Ying-Yu Kuo
  • Chung-An Lu
  • Ching-Rong Wu
  • Pei-Jyun Lian
  • Chwan-Yang Hong
  • Yi-Ting Ke
  • Juin-Hua Huang
  • Ching-Hui YehEmail author


By oligo microarray expression profiling, we identified a rice RING zinc-finger protein (RZFP), OsRZFP34, whose gene expression increased with high temperature or abscisic acid (ABA) treatment. As compared with the wild type, rice and Arabidopsis with OsRZFP34 overexpression showed increased relative stomata opening even with ABA treatment. Furthermore, loss-of-function mutation of OsRZFP34 and AtRZFP34 (At5g22920), an OsRZFP34 homolog in Arabidopsis, decreased relative stomata aperture under nonstress control conditions. Expressing OsRZFP34 in atrzfp34 reverted the mutant phenotype to normal, which indicates a conserved molecular function between OsRZFP34 and AtRZFP34. Analysis of water loss and leaf temperature under stress conditions revealed a higher evaporation rate and cooling effect in OsRZFP34-overexpressing Arabidopsis and rice than the wild type, atrzfp34 and osrzfp34. Thus, stomata opening, enhanced leaf cooling, and ABA insensitivity was conserved with OsRZFP34 expression. Transcription profiling of transgenic rice overexpressing OsRZFP34 revealed many genes involved in OsRZFP34-mediated stomatal movement. Several genes upregulated or downregulated in OsRZFP34-overexpressing plants were previously implicated in Ca2+ sensing, K+ regulator, and ABA response. We suggest that OsRZFP34 may modulate these genes to control stomata opening.


ABA Heat stress Rice RING zinc finger protein Stomata Transpiration 



Abscisic acid


Arabidopsis thaliana ecotype Columbia


Heat shock


Heat shock proteins


Opening solution


Reactive oxygen species


RING zinc-finger protein


Small heat shock proteins


Taiwan rice insertion mutant


Wild type



We are grateful to Drs. Tong-Seung Tseng, Tzung-Meng Wu, and Kuo-Chen Yeh for comments and suggestions on the manuscript; and Dr. Yee-Yung Charng for technical assistance with thermal imaging. We thank the electron microscopy laboratory of Tzu Chi University. We also thank ABRC and TRIM for providing seeds. This work was supported by the National Science Council, Taiwan, ROC (NSC96-2317-B-008-003 and NSC98-2324-B-008-002 to C.H. Yeh).

Supplementary material

11103_2014_217_MOESM1_ESM.pdf (46 kb)
Supplementary material 1 (PDF 45 kb)
11103_2014_217_MOESM2_ESM.pdf (63 kb)
Supplementary material 2 (PDF 63 kb)
11103_2014_217_MOESM3_ESM.pdf (53 kb)
Supplementary material 3 (PDF 53 kb)
11103_2014_217_MOESM4_ESM.pdf (236 kb)
Supplementary material 4 (PDF 235 kb)
11103_2014_217_MOESM5_ESM.docx (11 kb)
Supplementary material 5 (DOCX 11 kb)


  1. Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osório ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89:907–916PubMedCrossRefGoogle Scholar
  2. Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Nat Acad Sci 103:8281–8286PubMedCentralPubMedCrossRefGoogle Scholar
  3. Freemont PS, Hanson IM, Trowsdale J (1991) A novel cysteine-rich sequence motif. Cell 64:483–484PubMedCrossRefGoogle Scholar
  4. Guan JC, Yeh CH, Lin YP, Ke YT, Chen MT, You JW, Liu YH, Lu CA, Wu SJ, Lin CY (2010) A 9 bp cis-element in the promoters of class I small heat shock protein genes on chromosome 3 in rice mediates L-azetidine-2-carboxylic acid and heat shock responses. J Exp Bot 61:4249–4261PubMedCentralPubMedCrossRefGoogle Scholar
  5. Guo WJ, Ho THD (2008) An abscisic acid-induced protein, HVA22, inhibits gibberellin-mediated programmed cell death in cereal aleurone cells. Plant Physiol 147:1710–1722PubMedCentralPubMedCrossRefGoogle Scholar
  6. Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994PubMedCrossRefGoogle Scholar
  7. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282PubMedCrossRefGoogle Scholar
  8. Hirayama T, Shinozaki K (2007) Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci 12:343–351PubMedCrossRefGoogle Scholar
  9. Hua D, Wang C, He J, Liao H, Duan Y, Zhu Z, Guo Y, Chen Z, Gong Z (2012) A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell 24:2546–2561PubMedCentralPubMedCrossRefGoogle Scholar
  10. Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23:1805–1817PubMedCentralPubMedCrossRefGoogle Scholar
  11. Hurng WP, Lin TL, Ren SS, Chen JC, Chen YR, Kao CH (1988) Senescence of rice leaves XVIII. Changes of stomatal aperture during senescence. Plant Cell Physiol 29:27–31Google Scholar
  12. Hüve K, Bichele I, Rasulov B, Niinemets Ü (2011) When it is too hot for photosynthesis: heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation. Plant Cell Environ 34:113–126PubMedCrossRefGoogle Scholar
  13. Jagadish SVK, Muthurajan R, Oane R, Wheeler TR, Heuer S, Bennett J, Craufurd PQ (2010) Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J Exp Bot 61:143–156PubMedCentralPubMedCrossRefGoogle Scholar
  14. Ko JH, Yang SH, Han KH (2006) Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J 47:343–355PubMedCrossRefGoogle Scholar
  15. Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316PubMedCrossRefGoogle Scholar
  16. Kuromori T, Sugimoto E, Shinozaki K (2011) Arabidopsis mutants of AtABCG22, an ABC transporter gene, increase water transpiration and drought susceptibility. Plant J 67:885–894PubMedCrossRefGoogle Scholar
  17. Lebaudy A, Anne-Alie’nor Véry A-A, Sentenac A (2007) K+ channel activity in plants: genes, regulations and functions. FEBS Lett 581:2357–2366PubMedCrossRefGoogle Scholar
  18. Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu JK (2001) The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev 15:912–924PubMedCentralPubMedCrossRefGoogle Scholar
  19. Leung J, Bouvier-Durand M, Morris P-C, Guerrier D, Chefdor F, Giraudat J (1994) Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264:1448–1452PubMedCrossRefGoogle Scholar
  20. Lewis DA, Nobel PS (1977) Thermal energy exchange model and water loss of a barrel cactus, Ferocactus acanthodes. Plant Physiol 60:609–616PubMedCentralPubMedCrossRefGoogle Scholar
  21. Liu FL, Jensen CR, Shahanzari A, Andersen MN, Jacobsen SE (2005) ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Sci 168:831–836CrossRefGoogle Scholar
  22. Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099PubMedCentralPubMedCrossRefGoogle Scholar
  23. Nagy R, Grob H, Weder B, Green P, Klein M, Frelet-Barrand A, Schjoerring JK, Brearley C, Martinoia E (2009) The Arabidopsis ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage. J Biol Chem 284:33614–33622PubMedCentralPubMedCrossRefGoogle Scholar
  24. Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Nat Acad Sci 101:9971–9975PubMedCentralPubMedCrossRefGoogle Scholar
  25. Ricachenevsky FK, Sperotto RA, Menguer PK, Fett JP (2010) Identification of Fe-excess-induced genes in rice shoots reveals a WRKY transcription factor responsive to Fe, drought and senescence. Mol Biol Rep 37:3735–3745PubMedCrossRefGoogle Scholar
  26. Ross CA, Liu Y, Shen QJ (2007) The WRKY gene family in rice (Oryza sativa). J Integr Plant Biol 49:827–842CrossRefGoogle Scholar
  27. Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:S401–S417PubMedCentralPubMedGoogle Scholar
  28. Schroeder JI, Kwak JM, Allen GJ (2001) Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410:327–330PubMedCrossRefGoogle Scholar
  29. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227PubMedCrossRefGoogle Scholar
  30. Siegel RS, Xue S, Murata Y, Yang Y, Nishimura N, Wang A, Schroeder JI (2009) Calcium elevation-and attenuated resting calcium-dependent abscisic acid induction of stomatal closure and abscisic acid-induced enhancement of calcium sensitivities of S-type anion and Kin channels in Arabidopsis guard cells. Plant J 59:207–220PubMedCentralPubMedCrossRefGoogle Scholar
  31. Sirichandra C, Wasilewska A, Vlad F, Valon C, Leung J (2009) The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. J Exp Bot 60:1439–1463PubMedCrossRefGoogle Scholar
  32. Suh SJ, Wang YF, Frelet A, Leonhardt N, Klein M, Forestier C, Mueller-Roeber B, Cho MH, Martinoia E, Schroeder JI (2007) The ATP binding cassette transporter AtMRP5 modulates anion and calcium channel activities in Arabidopsis guard cells. J Biol Chem 282:1916–1924PubMedCrossRefGoogle Scholar
  33. Sun W, van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochem Biophys Acta 1577:1–9PubMedGoogle Scholar
  34. Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51CrossRefGoogle Scholar
  35. Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R (2008) The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J Biol Chem 283:9269–9275PubMedCrossRefGoogle Scholar
  36. Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci 106:17588–17593PubMedCentralPubMedCrossRefGoogle Scholar
  37. Weigel D, Glazebrook J (2002) Arabidopsis: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  38. Welch JR, Vincent JR, Auffhammer M, Moya PF, Dobermann A, Dawe D (2010) Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proc Natl Acad Sci 107:14562–14567PubMedCentralPubMedCrossRefGoogle Scholar
  39. Yeh CH, Chang PFL, Yeh KW, Lin WC, Chen YM, Lin CY (1997) Expression of a gene encoding a 16.9-kDa heat shock protein, Oshsp16.9, in Escherichia coli enhances thermotolerance. Proc Natl Acad Sci 94:10967–10972PubMedCentralPubMedCrossRefGoogle Scholar
  40. Yoo CY, Miura K, Jin JB, Lee J, Park HC, Salt DE, Yun DJ, Bressan RA, Hasegawa PM (2006) SIZ1 small ubiquitin-like modifier E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid. Plant Physiol 142:1548–1558PubMedCentralPubMedCrossRefGoogle Scholar
  41. Zhang L, Lu YT (2003) Calmodulin-binding protein kinases in plants. Trends Plant Sci 8:123–127PubMedCrossRefGoogle Scholar
  42. Zhang Y, Yang C, Li Y, Zheng N, Chen H, Zhao Q, Gao T, Guo H, Xiea Q (2007) SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell 19:1912–1929PubMedCentralPubMedCrossRefGoogle Scholar
  43. Zhou S, Zhao W, Li H, Guo Z, Peng YL (2008) Characterization of a novel RING finger gene OsRFP1, which is induced by ethylene, salicylic acid and blast fungus infection in rice. J Phytopathol 156:396–402CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Kuo-Hsuan Hsu
    • 1
  • Chia-Chin Liu
    • 2
  • Shaw-Jye Wu
    • 1
  • Ying-Yu Kuo
    • 1
  • Chung-An Lu
    • 1
  • Ching-Rong Wu
    • 1
  • Pei-Jyun Lian
    • 1
  • Chwan-Yang Hong
    • 3
  • Yi-Ting Ke
    • 1
  • Juin-Hua Huang
    • 1
  • Ching-Hui Yeh
    • 1
    • 4
    Email author
  1. 1.Department of Life SciencesNational Central UniversityTaoyuanTaiwan
  2. 2.Department of Life SciencesTzu Chi UniversityHualienTaiwan
  3. 3.Department of Agricultural ChemistryNational Taiwan UniversityTaipeiTaiwan
  4. 4.Institute of Systems Biology and BioinformaticsNational Central UniversityTaoyuanTaiwan

Personalised recommendations