Advertisement

Plant Molecular Biology

, Volume 84, Issue 6, pp 675–692 | Cite as

A novel chloroplast localized Rab GTPase protein CPRabA5e is involved in stress, development, thylakoid biogenesis and vesicle transport in Arabidopsis

  • Sazzad Karim
  • Mohamed Alezzawi
  • Christel Garcia-Petit
  • Katalin Solymosi
  • Nadir Zaman Khan
  • Emelie Lindquist
  • Peter Dahl
  • Stefan Hohmann
  • Henrik Aronsson
Article

Abstract

A novel Rab GTPase protein in Arabidopsis thaliana, CPRabA5e (CP = chloroplast localized) is located in chloroplasts and has a role in transport. Transient expression of CPRabA5e:EGFP fusion protein in tobacco (Nicotiana tabacum) leaves, and immunoblotting using Arabidopsis showed localization of CPRabA5e in chloroplasts (stroma and thylakoids). Ypt31/32 in the yeast Saccharomyces cerevisiae are involved in regulating vesicle transport, and CPRabA5e a close homolog of Ypt31/32, restores the growth of the ypt31Δ ypt32 ts mutant at 37 °C in yeast complementation. Knockout mutants of CPRabA5e displayed delayed seed germination and growth arrest during oxidative stress. Ultrastructural studies revealed that after preincubation at 4 °C mutant chloroplasts contained larger plastoglobules, lower grana, and more vesicles close to the envelopes compared to wild type, and vesicle formation being enhanced under oxidative stress. This indicated altered thylakoid development and organization of the mutants. A yeast-two-hybrid screen with CPRabA5e as bait revealed 13 interacting partner proteins, mainly located in thylakoids and plastoglobules. These proteins are known or predicted to be involved in development, stress responses, and photosynthesis related processes, consistent with the stress phenotypes observed. The results observed suggest a role of CPRabA5e in transport to and from thylakoids, similar to cytosolic Rab proteins involved in vesicle transport.

Keywords

Chloroplast Plastoglobuli Rab Transport Thylakoid Vesicle 

Notes

Acknowledgments

For the yeast arf1Δ arf2Δ and ypt31Δ ypt32 ts double mutants, we thank Prof Akihiko Nakano (RIKEN, Japan), and Prof Nava Segev (The University of Illinois at Chicago, USA), respectively. The authors are grateful to Victoria Gyzander for technical assistance (University of Gothenburg), and Csilla Gergely (Eötvös University) for skilful assistance with electron microscopic sample preparation. For providing antibodies we thank Prof Adrian Clarke (Lhcb2 and Rubisco) and Prof Felix Kessler (Toc75). This work was supported by Carl Tryggers Foundation (to H.A.), Olle Engkvist Byggmästare Foundation (to H.A.), the Royal Society of Arts and Sciences in Gothenburg (to S.K.), the Swedish Research Council (to H.A.), and Ph.D. student fellowships from the University of Malakand (to N.Z.) and Libyan Higher Education (to M.A.).

Supplementary material

11103_2013_161_MOESM1_ESM.pdf (411 kb)
Supplementary material 1 (PDF 411 kb)

References

  1. Ådén J, Wallgren M, Storm P, Weise CF, Christiansen A, Schröder WP, Funk C, Wolf-Watz M (2011) Extraordinary μs–ms backbone dynamics in Arabidopsis thaliana peroxiredoxin Q. Biochim Biophy Acta (BBA) - Proteins Proteomics 1814(12):1880–1890Google Scholar
  2. Agarwal P, Reddy M, Sopory S, Agarwal PK (2009) Plant rabs: characterization, functional diversity, and role in stress tolerance. Plant Mol Biol Report 27(4):417–430CrossRefGoogle Scholar
  3. Ali B, Seabra M (2005) Targeting of Rab GTPases to cellular membranes. Biochem Soc Trans 33:652–656PubMedCrossRefGoogle Scholar
  4. Andersson MX, Sandelius AS (2004) A chloroplast-localized vesicular transport system: a bio-informatics approach. BMC Genomics 5(1):40PubMedCentralPubMedCrossRefGoogle Scholar
  5. Angers CG, Merz AJ (2011) New links between vesicle coats and Rab-mediated vesicle targeting. Semin Cell Dev Biol 22(1):18–26Google Scholar
  6. Aronsson H, Jarvis P (2002) A simple method for isolating import-competent Arabidopsis chloroplasts. FEBS Lett 529(2):215–220PubMedCrossRefGoogle Scholar
  7. Aronsson H, Jarvis RP (2011) Rapid isolation of Arabidopsis chloro­plasts and their use for in vitro protein import assays. In: Jarvis RP (ed) Chloroplast research in Arabidopsis : methods and protocols Volume I. Methods in molecular biology, vol 774. Humana Press, pp 281-305Google Scholar
  8. Aronsson H, Combe J, Jarvis P (2003) Unusual nucleotide-binding properties of the chloroplast protein import receptor, atToc33. FEBS Lett 544(1):79–85PubMedCrossRefGoogle Scholar
  9. Austin JR, Frost E, Vidi PA, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18(7):1693–1703PubMedCentralPubMedCrossRefGoogle Scholar
  10. Benli M, Döring F, Robinson D, Yang X, Gallwitz D (1996) Two GTPase isoforms, Ypt31p and Ypt32p, are essential for Golgi function in yeast. EMBO J 15(23):6460–6475PubMedCentralPubMedGoogle Scholar
  11. Block MA, Tewari AK, Albrieux C, Marechal E, Joyard J (2002) The plant S-adenosyl-L-methionine: Mg-protoporphyrin IX methyltransferase is located in both envelope and thylakoid chloroplast membranes. Eur J Biochem 269(1):240–248PubMedCrossRefGoogle Scholar
  12. Borg S, Poulsen C (1994) Molecular analysis of two Ypt/Rab-related sequences isolated from soybean (Glycine max) DNA libraries. Plant Mol Biol 26(1):175–187PubMedCrossRefGoogle Scholar
  13. Brandizzi F, Snapp EL, Roberts AG, Lippincott-Schwartz J, Hawes C (2002) Membrane protein transport between the endoplasmic reticulum and the Golgi in tobacco leaves is energy dependent but cytoskeleton independent: evidence from selective photobleaching. Plant Cell 14(6):1293–1309PubMedCentralPubMedCrossRefGoogle Scholar
  14. Chen SH, Shah AH, Segev N (2011) Ypt31/32 GTPases and their F-Box effector Rcy1 regulate ubiquitination of recycling proteins. Cell Logist 1(1):21–31PubMedCentralPubMedCrossRefGoogle Scholar
  15. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31(13):3497–3500PubMedCentralPubMedCrossRefGoogle Scholar
  16. Chow CM, Neto H, Foucart C, Moore I (2008) Rab-A2 and Rab-A3 GTPases define a trans-Golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate. Plant Cell 20(1):101–123PubMedCentralPubMedCrossRefGoogle Scholar
  17. Damkjær JT, Kereïche S, Johnson MP, Kovacs L, Kiss AZ, Boekema EJ, Ruban AV, Horton P, Jansson S (2009) The photosystem II light-harvesting protein Lhcb3 affects the macrostructure of photosystem II and the rate of state transitions in Arabidopsis. Plant Cell 21(10):3245–3256PubMedCentralPubMedCrossRefGoogle Scholar
  18. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2(4):953–971PubMedCrossRefGoogle Scholar
  19. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 Google Scholar
  20. Ferro M, Brugière S, Salvi D, Seigneurin-Berny D, Moyet L, Ramus C, Miras S, Mellal M, Le Gall S, Kieffer-Jaquinod S (2010) AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteomics 9(6):1063–1084PubMedCentralPubMedCrossRefGoogle Scholar
  21. Friso G, Giacomelli L, Ytterberg AJ, Peltier JB, Rudella A, Sun Q, van Wijk KJ (2004) In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. Plant Cell 16(2):478–499PubMedCentralPubMedCrossRefGoogle Scholar
  22. Furuta N, Fujimura-Kamada K, Saito K, Yamamoto T, Tanaka K (2007) Endocytic recycling in yeast is regulated by putative phospholipid translocases and the Ypt31p/32p–Rcy1p pathway. Mol Biol Cell 18(1):295–312PubMedCentralPubMedCrossRefGoogle Scholar
  23. Garcia C, Khan NZ, Nannmark U, Aronsson H (2010) The chloroplast protein CPSAR1, dually localized in the stroma and the inner envelope membrane, is involved in thylakoid biogenesis. Plant J 63(1):73–85. doi: 10.1111/j.1365-313X.2010.04225.x PubMedGoogle Scholar
  24. Gargano D, Maple-Grødem J, Reisinger V, Eichacker L, Møller S (2013) Analysis of the chloroplast proteome in arc mutants and identification of novel protein components associated with FtsZ2. Plant Mol Biol 81:235–244PubMedCrossRefGoogle Scholar
  25. Gietz RD, Schiestl RH (1995) Transforming yeast with DNA. Methods Mol Cell Biol 5:255–269Google Scholar
  26. Gonçalves S, Cairney J, Rodríguez MP, Cánovas F, Oliveira M, Miguel C (2007) PpRab1, a Rab GTPase from maritime pine is differentially expressed during embryogenesis. Mol Genet Genomics 278(3):273–282PubMedCrossRefGoogle Scholar
  27. Goulas E, Schubert M, Kieselbach T, Kleczkowski LA, Gardeström P, Schröder W, Hurry V (2006) The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short-and long-term exposure to low temperature. Plant J 47(5):720–734PubMedCrossRefGoogle Scholar
  28. Grennan AK (2006) Genevestigator. Facilitating web-based gene-expression analysis. Plant Physiol 141(4):1164–1166PubMedCentralPubMedCrossRefGoogle Scholar
  29. Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics 2008:5Google Scholar
  30. Inaba T, Alvarez-Huerta M, Li M, Bauer J, Ewers C, Kessler F, Schnell DJ (2005) Arabidopsis Tic110 is essential for the assembly and function of the protein import machinery of plastids. Plant Cell 17(5):1482–1496PubMedCentralPubMedCrossRefGoogle Scholar
  31. Izumi M, Tsunoda H, Suzuki Y, Makino A, Ishida H (2012) RBCS1A and RBCS3B, two major members within the Arabidopsis RBCS multigene family, function to yield sufficient Rubisco content for leaf photosynthetic capacity. J Exp Bot 63(5):2159–2170PubMedCentralPubMedCrossRefGoogle Scholar
  32. Jedd G, Mulholland J, Segev N (1997) Two new Ypt GTPases are required for exit from the yeast trans-Golgi compartment. J Cell Biol 137(3):563–580PubMedCentralPubMedCrossRefGoogle Scholar
  33. Jones AME, Thomas V, Bennett MH, Mansfield J, Grant M (2006) Modifications to the Arabidopsis defense proteome occur prior to significant transcriptional change in response to inoculation with Pseudomonas syringae. Plant Physiol 142(4):1603–1620PubMedCentralPubMedCrossRefGoogle Scholar
  34. Karim S, Holmström KO, Mandal A, Dahl P, Hohmann S, Brader G, Palva ET, Pirhonen M (2007) AtPTR3, a wound-induced peptide transporter needed for defence against virulent bacterial pathogens in Arabidopsis. Planta 225(6):1431–1445PubMedCrossRefGoogle Scholar
  35. Kessler F, Vidi PA (2007) Plastoglobule lipid bodies: their functions in chloroplasts and their potential for applications. Green Gene Technol 107:153–172CrossRefGoogle Scholar
  36. Khan NZ, Lindquist E, Aronsson H (2013) New putative chloroplast vesicle transport components and cargo proteins revealed using a bioinformatics approach: an Arabidopsis model. PLoS One 12:e59898CrossRefGoogle Scholar
  37. Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100(1):95–97PubMedCrossRefGoogle Scholar
  38. Leonard SE, Reddie KG, Carroll KS (2009) Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells. ACS Chem Biol 4(9):783–799PubMedCrossRefGoogle Scholar
  39. Leung KF, Baron R, Seabra MC (2006) Thematic review series: lipid posttranslational modifications. geranylgeranylation of Rab GTPases. J Lipid Res 47(3):467–475PubMedCrossRefGoogle Scholar
  40. Li X, Valencia A, Sapp E, Masso N, Alexander J, Reeves P, Kegel KB, Aronin N, DiFiglia M (2010) Aberrant Rab11-dependent trafficking of the neuronal glutamate transporter EAAC1 causes oxidative stress and cell death in Huntington’s disease. J Neurosci 30(13):4552–4561PubMedCentralPubMedCrossRefGoogle Scholar
  41. Lundquist PK, Poliakov A, Bhuiyan NH, Zybailov B, Sun Q, van Wijk KJ (2012) The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genome-wide coexpression analysis. Plant Physiol 158(3):1172–1192PubMedCentralPubMedCrossRefGoogle Scholar
  42. Matsui M, Sasamoto S, Kunieda T, Nomura N, Ishizaki R (1989) Cloning of ara, a putative Arabidopsis thaliana gene homologous to the ras-related gene family. Gene 76(2):313–319PubMedCrossRefGoogle Scholar
  43. Mazel A, Leshem Y, Tiwari BS, Levine A (2004) Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol 134(1):118–128PubMedCentralPubMedCrossRefGoogle Scholar
  44. Morré DJ, Selldén G, Sundqvist C, Sandelius AS (1991) Stromal low temperature compartment derived from the inner membrane of the chloroplast envelope. Plant Physiol 97(4):1558–1564PubMedCentralPubMedCrossRefGoogle Scholar
  45. Narsai R, Law SR, Carrie C, Xu L, Whelan J (2011) In-depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis. Plant Physiol 157(3):1342–1362. doi: 10.1104/pp.111.183129 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, OxfordGoogle Scholar
  47. Nielsen E, Cheung AY, Ueda T (2008) The regulatory RAB and ARF GTPases for vesicular trafficking. Plant Physiol 147(4):1516–1526PubMedCentralPubMedCrossRefGoogle Scholar
  48. Novick P, Zerial M (1997) The diversity of Rab proteins in vesicle transport. Curr Opin Cell Biol 9(4):496–504PubMedCrossRefGoogle Scholar
  49. Peltier JB, Ytterberg AJ, Sun Q, van Wijk KJ (2004) New functions of the thylakoid membrane proteome of Arabidopsis thaliana revealed by a simple, fast, and versatile fractionation strategy. J Biol Chem 279(47):49367–49383PubMedCrossRefGoogle Scholar
  50. Pereira-Leal JB, Seabra MC (2001) Evolution of the Rab family of small GTP-binding proteins. J Mol Biol 313(4):889–901PubMedCrossRefGoogle Scholar
  51. Petersson UA, Kieselbach T, García-Cerdán JG, Schröder WP (2006) The Prx Q protein of Arabidopsis thaliana is a member of the luminal chloroplast proteome. FEBS Lett 580(26):6055–6061PubMedCrossRefGoogle Scholar
  52. Pfeffer SR (2001) Rab GTPases: specifying and deciphering organelle identity and function. Trends Cell Biol 11(12):487–491PubMedCrossRefGoogle Scholar
  53. Pfeffer S (2005) A model for Rab GTPase localization. Biochem Soc Trans 33:627–630PubMedCrossRefGoogle Scholar
  54. Pfeffer SR (2012) Rab GTPase localization and Rab cascades in Golgi transport. Biochem Soc Trans 40(6):1373–1377PubMedCrossRefGoogle Scholar
  55. Pfeffer S, Aivazian D (2004) Targeting Rab GTPases to distinct membrane compartments. Nat Rev Mol Cell Biol 5(11):886–896PubMedCrossRefGoogle Scholar
  56. Popoff V, Adolf F, Brügger B, Wieland F (2011) COPI budding within the Golgi stack. Cold Spring Harb Perspect Biol 3(11):a005231Google Scholar
  57. Porra R, Thompson W, Kriedemann P (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta (BBA) - Bioenerg 975(3):384–394Google Scholar
  58. Presley JF, Cole NB, Schroer TA, Hirschberg K, Zaal KJM, Lippincott-Schwartz J (1997) ER-to-Golgi transport visualized in living cells. Nature 389(6646):81–84PubMedCrossRefGoogle Scholar
  59. Rapala-Kozik M, Wolak N, Kujda M, Banas AK (2012) The upregulation of thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response. BMC Plant Biol 12(1):2PubMedCentralPubMedCrossRefGoogle Scholar
  60. Rosenblum JS, Pemberton LF, Bonifaci N, Blobel G (1998) Nuclear import and the evolution of a multifunctional RNA-binding protein. J Cell Biol 143(4):887–899PubMedCentralPubMedCrossRefGoogle Scholar
  61. Rutherford S, Moore I (2002) The Arabidopsis Rab GTPase family: another enigma variation. Curr Opin Plant Biol 5(6):518–528PubMedCrossRefGoogle Scholar
  62. Sacher M, Kim YG, Lavie A, Oh BH, Segev N (2008) The TRAPP complex: insights into its architecture and function. Traffic 9(12):2032–2042PubMedCentralPubMedCrossRefGoogle Scholar
  63. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425PubMedGoogle Scholar
  64. Saxena SK, Kaur S (2006) Regulation of epithelial ion channels by Rab GTPases. Biochem Biophys Res Commun 351(3):582–587PubMedCrossRefGoogle Scholar
  65. Schwartz SL, Cao C, Pylypenko O, Rak A, Wandinger-Ness A (2007) Rab GTPases at a glance. J Cell Sci 120(22):3905–3910PubMedCrossRefGoogle Scholar
  66. Segev N (2001) Ypt and Rab GTPases: insight into functions through novel interactions. Curr Opin Cell Biol 13(4):500–511PubMedCrossRefGoogle Scholar
  67. Sjögren LLE, MacDonald TM, Sutinen S, Clarke AK (2004) Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content. Plant Physiol 136(4):4114–4126PubMedCentralPubMedCrossRefGoogle Scholar
  68. Solymosi K, Bertrand M (2012) Soil metals, chloroplasts, and secure crop production: a review. Agron Sustain Dev 32(1):245–272CrossRefGoogle Scholar
  69. Solymosi K, Bóka K, Böddi B (2006) Transient etiolation: protochlorophyll(ide) and chlorophyll forms in differentiating plastids of closed and breaking leaf buds of horse chestnut (Aesculus hippocastanum). Tree Physiol 26(8):1087–1096PubMedCrossRefGoogle Scholar
  70. Stefano G, Renna L, Chatre L, Hanton SL, Moreau P, Hawes C, Brandizzi F (2006) In tobacco leaf epidermal cells, the integrity of protein export from the endoplasmic reticulum and of ER export sites depends on active COPI machinery. Plant J 46(1):95–110PubMedCrossRefGoogle Scholar
  71. Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10(8):513–525PubMedCrossRefGoogle Scholar
  72. Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81(1):153–208PubMedGoogle Scholar
  73. Takeuchi M, Ueda T, Yahara N, Nakano A (2002) Arf1 GTPase plays roles in the protein traffic between the endoplasmic reticulum and the Golgi apparatus in tobacco and Arabidopsis cultured cells. Plant J 31(4):499–515PubMedCrossRefGoogle Scholar
  74. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  75. Tanz SK, Kilian J, Johnsson C, Apel K, Small I, Harter K, Wanke D, Pogson B, Albrecht V (2012) The SCO2 protein disulphide isomerase is required for thylakoid biogenesis and interacts with LCHB1 chlorophyll a/b binding proteins which affects chlorophyll biosynthesis in Arabidopsis seedlings. Plant J 69:743–754PubMedCrossRefGoogle Scholar
  76. Tisdale EJ (2001) Glyceraldehyde-3-phosphate dehydrogenase is required for vesicular transport in the early secretory pathway. J Biol Chem 276(4):2480–2486PubMedCrossRefGoogle Scholar
  77. Tsujimoto Y, Takase D, Okano H, Tomari N, Watanabe K, Matsui H (2012) Functional roles of YPT31 and YPT32 in clotrimazole resistance of Saccharomyces cerevisiae through effects on vacuoles and ATP-binding cassette transporter (s). J Biosci Bioeng 115:4–11PubMedCrossRefGoogle Scholar
  78. Tunc-Ozdemir M, Miller G, Song L, Kim J, Sodek A, Koussevitzky S, Misra AN, Mittler R, Shintani D (2009) Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Physiol 151(1):421–432PubMedCentralPubMedCrossRefGoogle Scholar
  79. Vernoud V, Horton AC, Yang Z, Nielsen E (2003) Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol 131(3):1191–1208PubMedCentralPubMedCrossRefGoogle Scholar
  80. Vidi PA, Kanwischer M, Baginsky S, Austin JR, Csucs G, Dörmann P, Kessler F, Bréhélin C (2006) Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. J Biol Chem 281(16):11225–11234PubMedCrossRefGoogle Scholar
  81. Wang Q, Sullivan RW, Kight A, Henry RL, Huang J, Jones AM, Korth KL (2004) Deletion of the chloroplast-localized Thylakoid formation1 gene product in Arabidopsis leads to deficient thylakoid formation and variegated leaves. Plant Physiol 136(3):3594–3604PubMedCentralPubMedCrossRefGoogle Scholar
  82. Westphal S, Soll J, Vothknecht UC (2001) A vesicle transport system inside chloroplasts. FEBS Lett 506(3):257–261PubMedCrossRefGoogle Scholar
  83. Whyte JRC, Munro S (2002) Vesicle tethering complexes in membrane traffic. J Cell Sci 115(13):2627–2637PubMedGoogle Scholar
  84. Wittinghofer A, Vetter IR (2011) Structure–function relationships of the G domain, a canonical switch motif. Annu Rev Biochem 80:943–971PubMedCrossRefGoogle Scholar
  85. Yahara N, Ueda T, Sato K, Nakano A (2001) Multiple roles of Arf1 GTPase in the yeast exocytic and endocytic pathways. Mol Biol Cell 12(1):221–238PubMedCentralPubMedCrossRefGoogle Scholar
  86. Ytterberg AJ, Peltier JB, Van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140(3):984–997PubMedCentralPubMedCrossRefGoogle Scholar
  87. Zhang J, Addepalli B, Yun KY, Hunt AG, Xu R, Rao S, Li QQ, Falcone DL (2008) A polyadenylation factor subunit implicated in regulating oxidative signaling in Arabidopsis thaliana. PLoS One 3(6):e2410. doi: 10.1371/journal.pone.0002410 PubMedCentralPubMedCrossRefGoogle Scholar
  88. Zhang R, Wise RR, Struck KR, Sharkey TD (2010) Moderate heat stress of Arabidopsis thaliana leaves causes chloroplast swelling and plastoglobule formation. Photosynth Res 105(2):123–134PubMedCrossRefGoogle Scholar
  89. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136(1):2621–2632PubMedCentralPubMedCrossRefGoogle Scholar
  90. Zou S, Liu Y, Zhang XQ, Chen Y, Ye M, Zhu X, Yang S, Lipatova Z, Liang Y, Segev N (2012) Modular TRAPP complexes regulate intracellular protein trafficking through multiple Ypt/Rab GTPases in Saccharomyces cerevisiae. Genetics 191(2):451–460PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sazzad Karim
    • 1
  • Mohamed Alezzawi
    • 1
  • Christel Garcia-Petit
    • 1
  • Katalin Solymosi
    • 2
  • Nadir Zaman Khan
    • 1
  • Emelie Lindquist
    • 1
  • Peter Dahl
    • 3
  • Stefan Hohmann
    • 3
  • Henrik Aronsson
    • 1
  1. 1.Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
  2. 2.Department of Plant Anatomy, Institute of BiologyEötvös UniversityBudapestHungary
  3. 3.Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden

Personalised recommendations