Skip to main content

Increase in transcript accumulation of Psy1 and e-Lcy genes in grain development is associated with differences in seed carotenoid content between durum wheat and tritordeum

Abstract

Carotenoid rich diets have been associated with lower risk of certain diseases. The great importance of cereals in human diet has directed breeding programs towards carotenoid enhancement to alleviate these deficiencies in developing countries and to offer new functional foods in the developed ones. The new cereal tritordeum (×Tritordeum Ascherson et Graebener) derived from durum wheat (Triticum turgidum ssp. durum) and the wild barley Hordeum chilense, naturally presents carotenoid levels 5–8 times higher than those of durum wheat. The improvement of tritordeum properties as a new functional food requires the elucidation of biosynthetic steps for carotenoid accumulation in seeds that differ from durum wheat. In this work expression patterns of nine genes from the isoprenoid and carotenoid biosynthetic pathways were monitored during grain development in durum wheat and tritordeum. Additionally, a fine identification and quantification of pigments (chlorophylls and carotenoids) during grain development and in mature seeds has been addressed. Transcript levels of Psy1, Psy2, Zds, e-Lcy and b-Lcy were found to correlate to carotenoid content in mature grains. The specific activation of the homeologous genes Psy1, e-Lcy from H. chilense and the high lutein esterification found in tritordeum may serve to explain the differences with durum wheat in carotenoid accumulation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

ABA:

Abscisic acid

BHT:

Butylated hydroxytoluene

b-Lcy :

Lycopene beta cyclase

CrtISO1 :

Carotenoid isomerase 1

CTAB:

Hexadecyltrimethylammonium bromide

dpa:

Days post anthesis

DW:

Durum wheat

Dxr :

Deoxy-d-xylulose 5-phosphate reductoisomerase

Dxs3 :

1-Deoxy-d-xylulose 5-phosphate synthase 3

e-Lcy :

Lycopene epsilon cyclase

FU:

Fluorescence units

Ggpps1 :

Geranyl geranyl pyrophosphate synthase 1

Hdr :

4-Hydroxy-3-methylbut-2-enyldiphosphate reductase (synonym ispH)

HPLC:

High performance liquid chromatography

HSD:

Honestly Significant Difference

HT:

Tritordeum

LHC:

Light-harvesting complex

MEP:

Methylerythritol phosphate pathway (non-mevalonate pathway)

Pds :

Phytoene dehydrogenase

Psy1 :

Phytoene synthase 1

Psy2 :

Phytoene synthase 2

St:

Stage

TLC:

Thin layer chromatography

VAD:

Vitamin A deficiency

YPC:

Yellow pigment content

Zds :

Zeta-carotene desaturase

References

  • Adom KK, Sorrells ME, Liu RH (2005) Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J Agr Food Chem 53:2297–2306

    CAS  Article  Google Scholar 

  • Alvarez JB, Martin LM, Martin A (1998) Chromosomal localization of genes for carotenoid pigments using addition lines of Hordeum chilense in wheat. Plant Breed 117:287–289

    CAS  Article  Google Scholar 

  • Alvarez JB, Martin LM, Martin A (1999) Genetic variation for carotenoid pigment content in the amphiploid Hordeum chilense × Triticum turgidum conv. durum. Plant Breed 118:187–189

    CAS  Article  Google Scholar 

  • Atienza SG, Avila CM, Martin A (2007a) The development of a PCR-based marker for Psy1 from Hordeum chilense, a candidate gene for carotenoid content accumulation in tritordeum seeds. Aust J Agr Res 58:767–773

    CAS  Article  Google Scholar 

  • Atienza SG, Ballesteros J, Martin A, Hornero-Méndez D (2007b) Genetic variability of carotenoid concentration and degree of esterification among tritordeum (xTritordeum Ascherson et Graebner) and durum wheat accessions. J Agr Food Chem 55:4244–4251

    CAS  Article  Google Scholar 

  • Atienza SG, Martín A, Pecchioni N, Platani C, Cattivelli L (2008) The nuclear-cytoplasmic interaction controls carotenoid content in wheat. Euphytica 159:325–331

    CAS  Article  Google Scholar 

  • Bai L, Kim E-H, DellaPenna D, Brutnell TP (2009) Novel lycopene epsilon cyclase activities in maize revealed through perturbation of carotenoid biosynthesis. Plant J 59:588–599

    CAS  PubMed  Article  Google Scholar 

  • Ballesteros J, Ramirez MC, Martinez C, Atienza SG, Martin A (2005) Registration of HT621, a high carotenoid content tritordeum germplasm line. Crop Sci 45:2662–2663

    Article  Google Scholar 

  • Barua AB, Olson JA (2001) Xanthophyll epoxides, unlike β-carotene monoepoxides, are not detectible absorbed by humans. Human Nutrition and Metabolism Research. J Nutr 131:3212–3215

    CAS  PubMed  Google Scholar 

  • Beyer P, Al-Babili S, Ye X, Lucca P, Schaub P, Welsch R, Potrykus I (2002) Golden Rice: Introducing the β-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J Nutr 132:506–510

    Google Scholar 

  • Britton G (1991) Carotenoids. In: Dey PM, Harborne JB (eds) Methods in Plant Biochemistry. Academic Press, London, pp 473–518

    Google Scholar 

  • Britton G (1995) UV/visible spectroscopy. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 1B., spectroscopyBirkhäuser, Basel pp, pp 13–62

    Google Scholar 

  • Britton G (2008) Functions of intact carotenoids. In: Britton G, Liaaen-Jensen S, Pfander H (eds) carotenoids, vol 4., Natural functionsBirkhäuser, Basel pp, pp 189–212

    Chapter  Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (2004) Carotenoid Handbook. Birkhäuser Verlag, Basel

    Book  Google Scholar 

  • Carpentier S, Knaus M, Suh M (2009) Associations between lutein, zeaxanthin, and age-related macular degeneration: an overview. Crit Rev Food Sci 49:313–326

    CAS  Article  Google Scholar 

  • Cazzonelli CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15:266–274

    CAS  PubMed  Article  Google Scholar 

  • Chung SM, Staub JE (2003) The development and evaluation of consensus chloroplast primer pairs that possess highly variable sequence regions in a diverse array of plant taxa. Theor Appl Genet 107:757–767

    CAS  PubMed  Article  Google Scholar 

  • Crawford A, Francki M (2013) Lycopene-ε-cyclase (e-LCY3A) is functionally associated with quantitative trait loci for flour b* colour on chromosome 3A in wheat (Triticum aestivum L.). Mol Breed 31:737–741

    CAS  Article  Google Scholar 

  • Cuttriss AJ, Cazzonelli CI, Wurtzel ET, Pogson BJ (2011) Carotenoids. Adv Bot Res 58:1–36

    CAS  Article  Google Scholar 

  • Digesù AM, Platani C, Cattivelli L, Mangini G, Blanco A (2009) Genetic variability in yellow pigment components in cultivated and wild tetraploid wheats. J Cereal Sci 50:210–218

    Article  Google Scholar 

  • Dong CH, Ma ZY, Xia XC, Zhang LP, He ZH (2012) Allelic variation at the TaZds-A1 locus on wheat chromosome 2A and development of a functional marker in common wheat. J Integr Agric 11:1067–1074

    CAS  Article  Google Scholar 

  • Fishwick MJ, Wright AJ (1980) Isolation and characterization of amyloplast envelope membranes from Solanum tuberosum. Phytochemistry 19:55–59

    CAS  Article  Google Scholar 

  • Gallagher CE, Matthews PD, Li F, Wurtzel ET (2004) Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses. Plant Physiol 135:1776–1783

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Giménez MJ, Pistón F, Atienza SG (2011) Identification of suitable reference genes for normalization of qPCR data in comparative transcriptomics analyses in the Triticeae. Planta 233:163–173

    PubMed  Article  Google Scholar 

  • Giuliano G, Tavazza R, Diretto G, Beyer P, Taylor MA (2008) Metabolic engineering of carotenoid biosynthesis in plants. Trends Biotechnol 26:139–145

    CAS  PubMed  Article  Google Scholar 

  • Graham RD, Humphries JM, Kitchen JL (2000) Nutritionally enhanced cereals: a sustainable foundation for a balanced diet. Asia Pac J Clinic Nut 9:S91–S96

    Article  Google Scholar 

  • Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, Stapleton AE, Vallabhaneni R, Williams M, Wurtzel ET, Yan J, Buckler ES (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • He XY, Zhang YL, He ZH, Wu YP, Xiao YG, Ma CX, Xia XC (2008) Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet 116:213–221

    CAS  PubMed  Article  Google Scholar 

  • He XY, He ZH, Ma W, Appels R, Xia XC (2009a) Allelic variants of phytoene synthase 1 (Psy1) genes in Chinese and CIMMYT wheat cultivars and development of functional markers for flour colour. Mol Breed 23:553–563

    CAS  Article  Google Scholar 

  • He XY, Wang JW, Ammar K, Pena RJ, Xia XC, He ZH (2009b) Allelic variants at the Psy-A1 and Psy-B1 loci in durum wheat and their associations with grain yellowness. Crop Sci 49:2058–2064

    CAS  Article  Google Scholar 

  • Hentschel V, Kranl K, Hollmann J, Lindhauer MG, Bohm V, Bitsch R (2002) Spectrophotometric determination of yellow pigment content and evaluation of carotenoids by high-performance liquid chromatography in durum wheat grain. J Agr Food Chem 50:6663–6668

    CAS  Article  Google Scholar 

  • Hidalgo A, Brandolini A, Pompei C, Piscozzi R (2006) Carotenoids and tocols of einkorn wheat (Triticum monococcum ssp. monococcum L.). J Cereal Sci 44:182–193

    CAS  Article  Google Scholar 

  • Hornero-Méndez D, Mínguez-Mosquera MI (2000) Xanthophyll esterification accompanying carotenoid overaccumulation in chromoplast of Capsicum annuum ripening fruits is a constitutive process and useful for ripeness index. J Agr Food Chem 48:1617–1622

    Article  Google Scholar 

  • Howitt CA, Pogson BJ (2006) Carotenoid accumulation and function in seeds and non-green tissues. Plant, Cell Environ 29:435–445

    CAS  Article  Google Scholar 

  • Howitt CA, Cavanagh CR, Bowerman AF, Cazzonelli C, Rampling L, Mimica JL, Pogson BJ (2009) Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm. Funct Integr Genomics 9:363–376

    CAS  PubMed  Article  Google Scholar 

  • Li FQ, Vallabhaneni R, Yu J, Rocheford T, Wurtzel ET (2008) The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermal stress tolerance. Plant Physiol 147:1334–1346

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Li F, Tsfadia O, Wurtzel ET (2009) The phytoene synthase gene family in the Grasses: subfunctionalization provides tissue-specific control of carotenogenesis. Plant Signal Behav 4:208–211

    PubMed Central  PubMed  Article  Google Scholar 

  • Martin A, Sánchez-Monge E (1982) Cytology and morphology of the amphiploid Hordeum chilense × Triticum turgidum conv Durum. Euphytica 31:261–267

    Article  Google Scholar 

  • Martin AC, Atienza SG, Barro F (2008a) Use of ccSSR markers for the determination of the purity of alloplasmic wheat in different Hordeum cytoplasms. Plant Breed 127:470–475

    CAS  Article  Google Scholar 

  • Martin AC, Atienza SG, Ramirez MC, Barro F, Martin A (2008b) Male fertility restoration of wheat in Hordeum chilense cytoplasm is associated with 6H(ch)S chromosome addition. Aust J Agr Res 59:206–213

    CAS  Article  Google Scholar 

  • Mellado-Ortega E, Hornero-Méndez D (2012) Isolation and identification of lutein esters, including their regioisomers, in tritordeum (xTritordeum Ascherson et Graebner) grains: evidence for a preferential xanthophyll acyltransferase activity. Food Chem 135:1344–1352

    CAS  PubMed  Article  Google Scholar 

  • Mínguez-Mosquera MI, Hornero-Méndez D (1993) Separation and quantification of the carotenoid pigments in red peppers (Capsicum annuum L.), paprika and oleoresin by reversed-phase HPLC. J Agr Food Chem 41:1616–1620

    Article  Google Scholar 

  • Mínguez-Mosquera MI, Gandul-Rojas B, Gallardo-Guerrero L, Roca M, Jarén-Galán M (2008a) Chlorophylls. In: Hurst WJ (ed) Methods of analysis for functional foods and nutraceuticals. CRC Press, New York, pp 337–400

    Google Scholar 

  • Mínguez-Mosquera MI, Hornero-Méndez D, Pérez-Gálvez A (2008b) Carotenoids and provitamin A in functional foods. In: Hurst WJ (ed) Methods of analysis for functional foods and nutraceuticals. CRC Press, New York, pp 277–335

    Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Naqvi S, Zhu CF, Farre G, Ramessar K, Bassie L, Breitenbach J, Conesa DP, Ros G, Sandmann G, Capell T, Christou P (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci USA 106:7762–7767

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Ndolo VU, Beta T (2013) Distribution of carotenoids in endosperm, germ, and aleurone fractions of cereal grain kernels. Food Chem 139:663–671

    CAS  PubMed  Article  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487

    CAS  PubMed  Article  Google Scholar 

  • Palaisa KA, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15:1795–1806

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Pozniak CJ, Knox RE, Clarke FR, Clarke JM (2007) Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor Appl Genet 114:525–537

    CAS  PubMed  Article  Google Scholar 

  • Qin X, Zhang W, Dubcovsky J, Tian L (2012) Cloning and comparative analysis of carotenoid β-hydroxylase genes provides new insights into carotenoid metabolism in tetraploid (Triticum turgidum ssp. durum) and hexaploid (Triticum aestivum) wheat grains. Plant Mol Biol 80:631–646

    CAS  PubMed  Article  Google Scholar 

  • Ramachandran A, Pozniak CJ, Clarke JM, Singh AK (2010) Carotenoid accumulation during grain development in durum wheat. J Cereal Sci 52:30–38

    CAS  Article  Google Scholar 

  • Randolph LF, Hand DB (1940) Relation between carotenoid content and number of genes per cell in diploid and tetraploid corn. J Agr Res 60:0051–0064

    CAS  Google Scholar 

  • Reimer S, Pozniak CJ, Clarke FR, Clarke JM, Somers DJ, Knox RE, Singh AK (2008) Association mapping of yellow pigment in an elite collection of durum wheat cultivars and breeding lines. Genome 51:1016–1025

    CAS  PubMed  Article  Google Scholar 

  • Rodríguez-Suárez C, Atienza SG (2012) Hordeum chilense genome, a useful tool to investigate the endosperm yellow pigment content in the Triticeae. BMC Plant Biol 12:200

    Google Scholar 

  • Rodríguez-Suárez C, Giménez MJ, Atienza SG (2010) Progress and perspectives for carotenoid accumulation in selected Triticeae species. Crop Pasture Sci 61:743–751

    Article  Google Scholar 

  • Rodríguez-Suárez C, Atienza SG, Pistón F (2011a) Allelic variation, alternative splicing and expression analysis of Psy1 gene in Hordeum chilense Roem. et Schult. PLoS ONE 6:e19885

    PubMed Central  PubMed  Article  Google Scholar 

  • Rodríguez-Suárez C, Giménez MJ, Ramírez MC, Martín AC, Gutierrez N, Ávila CM, Martín A, Atienza SG (2011b) Exploitation of nuclear and cytoplasm variability in Hordeum chilense for wheat breeding. Plant Genet Res Charact Util 9:313–316. doi:10.1017/S1479262111000402

    Article  Google Scholar 

  • Rodríguez-Suárez C, Giménez MJ, Gutiérrez N, Ávila CM, Machado A, Huttner E, Ramírez MC, Martín A, Castillo A, Kilian A, Atienza SG (2012) Development of wild barley (Hordeum chilense)-derived DArT markers and their use into genetic and physical mapping. Theor Appl Genet 124:713–722

    Google Scholar 

  • Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff MJB, Moorman AFM (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37:e45

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Shumskaya M, Wurtzel ET (2013) The carotenoid biosynthetic pathway: thinking in all dimensions. Plant Sci 208:58–63

    CAS  PubMed  Article  Google Scholar 

  • Shumskaya M, Bradbury LMT, Monaco RR, Wurtzel ET (2012) Plastid localization of the key carotenoid enzyme phytoene synthase is altered by isozyme, allelic variation, and activity. Plant Cell 24:3725–3741

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Singh A, Reimer S, Pozniak CJ, Clarke FR, Clarke JM, Knox RE, Singh AK (2009) Allelic variation at Psy1-A1 and association with yellow pigment in durum wheat grain. Theor Appl Genet 118:1539–1548

    CAS  PubMed  Article  Google Scholar 

  • Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74

    PubMed Central  PubMed  Article  Google Scholar 

  • Vallabhaneni R, Wurtzel ET (2009) Timing and biosynthetic potential for carotenoid accumulation in genetically diverse germplasm of maize. Plant Physiol 150:562–572

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Vallabhaneni R, Gallagher CE, Licciardello N, Cuttriss AJ, Quinlan RF, Wurtzel ET (2009) Metabolite sorting of a germplasm collection reveals the hydroxylase3 locus as a new target for maize provitamin A biofortification. Plant Physiol 151:1635–1645

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034.0031–research0034.0011

    Google Scholar 

  • Wang J, He X, He Z, Wang H, Xia X (2009) Cloning and phylogenetic analysis of phytoene synthase 1 (Psy1) genes in common wheat and related species. Hereditas 146:208–256

    PubMed  Article  Google Scholar 

  • WHO (2009) Global prevalence of vitamin A deficiency in populations at risk 1995–2005. In: WHO (ed) Global database on vitamin A deficiency. World Health Organization, Geneva, pp 1–55

    Google Scholar 

  • Wurtzel ET (2004) Genomics, genetics, and biochemistry of maize carotneoid biosynthesis. In: Romeo J (ed) Recent advances in phytochemistry, vol 38. Elsevier, Amsterdam, pp 85–110

    Google Scholar 

  • Wurtzel ET, Cuttriss A, Vallabhaneni R (2012) Maize provitamin A carotenoids, current resources and future metabolic engineering challenges. Front Plant Sci 3:29

    PubMed Central  PubMed  Article  Google Scholar 

  • Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-Carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    CAS  PubMed  Article  Google Scholar 

  • Zhang W, Dubcovsky J (2008) Association between allelic variation at the Phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theor Appl Genet 116:635–645

    CAS  PubMed  Article  Google Scholar 

  • Zhang C, Dong CH, He X, Zhang L, Xia XC, He ZH (2011) Allelic variants at the TaZds-D1 locus on wheat chromosome 2DL and their association with yellow pigment content. Crop Sci 51:1580–1590

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Grants AGL2011-24399 and AGL2010-14850, from the Ministerio de Economía y Competitividad, and P08-AGR-3477 Grant from the Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía), all of them including FEDER funding. C.R-S. acknowledges financial support from JAE-Doc program (CSIC, co-funded by FSE). E.M.-O. was the recipient of a JAE-Predoctoral grant (CSIC, co-funded by FSE). D.H.-M. and E.M.-O. are members of the IBERCAROT Network, funded by CYTED (ref. 112RT0445). We are grateful to Carmen M. Ramírez and Ana Pozo for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio G. Atienza.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rodríguez-Suárez, C., Mellado-Ortega, E., Hornero-Méndez, D. et al. Increase in transcript accumulation of Psy1 and e-Lcy genes in grain development is associated with differences in seed carotenoid content between durum wheat and tritordeum. Plant Mol Biol 84, 659–673 (2014). https://doi.org/10.1007/s11103-013-0160-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0160-y

Keywords

  • Carotenoids
  • Durum wheat
  • e-Lcy
  • Esterification
  • Psy1
  • Tritordeum