Advertisement

Plant Molecular Biology

, Volume 84, Issue 1–2, pp 189–202 | Cite as

Novel antifungal α-hairpinin peptide from Stellaria media seeds: structure, biosynthesis, gene structure and evolution

  • Anna A. SlavokhotovaEmail author
  • Eugene A. Rogozhin
  • Alexander K. Musolyamov
  • Yaroslav A. Andreev
  • Peter B. Oparin
  • Antonina A. Berkut
  • Alexander A. Vassilevski
  • Tsezi A. Egorov
  • Eugene V. Grishin
  • Tatyana I. Odintsova
Article

Abstract

Plant defense against disease is a complex multistage system involving initial recognition of the invading pathogen, signal transduction and activation of specialized genes. An important role in pathogen deterrence belongs to so-called plant defense peptides, small polypeptide molecules that present antimicrobial properties. Using multidimensional liquid chromatography, we isolated a novel antifungal peptide named Sm-AMP-X (33 residues) from the common chickweed (Stellaria media) seeds. The peptide sequence shows no homology to any previously described proteins. The peculiar cysteine arrangement (C1X3C2XnC3X3C4), however, allocates Sm-AMP-X to the recently acknowledged α-hairpinin family of plant defense peptides that share the helix-loop-helix fold stabilized by two disulfide bridges C1–C4 and C2–C3. Sm-AMP-X exhibits high broad-spectrum activity against fungal phytopathogens. We further showed that the N- and C-terminal “tail” regions of the peptide are important for both its structure and activity. The truncated variants Sm-AMP-X1 with both disulfide bonds preserved and Sm-AMP-X2 with only the internal S–S-bond left were progressively less active against fungi and presented largely disordered structure as opposed to the predominantly helical conformation of the full-length antifungal peptide. cDNA and gene cloning revealed that Sm-AMP-X is processed from a unique multimodular precursor protein that contains as many as 12 tandem repeats of α-hairpinin-like peptides. Structure of the sm-amp-x gene and two related pseudogenes sm-amp-x-ψ1 and sm-amp-x-ψ2 allows tracing the evolutionary scenario that led to generation of such a sophisticated precursor protein. Sm-AMP-X is a new promising candidate for engineering disease resistance in plants.

Keywords

Weeds cDNA cloning Gene structure Plant defense Protein biosynthesis α-hairpinin 

Notes

Acknowledgments

We thank Dr. Sergey I. Kovalchuk for peptide synthesis, Kseniya S. Kudryashova for CD measurements and Natalia V. Khadeeva for antibacterial assay. Support from the Russian Foundation for Basic Research [Grants 12-04-00117a and 11-04-00190a], the Biodiversity Program and the Program of Molecular and Cell Biology of the Russian Academy of Sciences is acknowledged. AAS and AAV are recipients of the stipend of the President of Russian Federation.

Supplementary material

11103_2013_127_MOESM1_ESM.doc (28 kb)
Supplementary material 1 (DOC 28 kb)

References

  1. Andreev YA, Kozlov SA, Vassilevski AA, Grishin EV (2010) Cyanogen bromide cleavage of proteins in salt and buffer solutions. Anal Biochem 407(1):144–146PubMedCrossRefGoogle Scholar
  2. Atkinson AH, Heath RL, Simpson RJ, Clarke AE, Anderson MA (1993) Proteinase inhibitors in Nicotiana alata stigmas are derived from a precursor protein which is processed into five homologous inhibitors. Plant Cell 5(2):203–213PubMedGoogle Scholar
  3. Baker MJ, Mooga VP, Guiard B, Langer T, Ryan MT, Stojanovski D (2012) Impaired folding of the mitochondrial small TIM chaperones induces clearance by the i-AAA protease. J Mol Biol 424(5):227–239PubMedCrossRefGoogle Scholar
  4. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27(2):573–580PubMedCrossRefGoogle Scholar
  5. Boyd PM, Barnaby N, Tan-Wilson A, Wilson KA (2002) Cleavage specificity of the subtilisin-like protease C1 from soybean. Biochim Biophys Acta 1596(2):269–282PubMedCrossRefGoogle Scholar
  6. Broekaert WF, Terras FRG, Cammue BPA, Vanderleyden J (1990) An automated quantitative assay for fungal growth-inhibition. FEMS Microbiol Lett 69(1–2):55–59CrossRefGoogle Scholar
  7. Casteels P, Ampe C, Jacobs F, Tempst P (1993) Functional and chemical characterization of Hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). J Biol Chem 268(10):7044–7054PubMedGoogle Scholar
  8. Coffeen WC, Wolpert TJ (2004) Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa. Plant Cell 16(4):857–873PubMedCrossRefGoogle Scholar
  9. Conners R, Konarev AV, Forsyth J, Lovegrove A, Marsh J, Joseph-Horne T, Shewry P, Brady RL (2007) An unusual helix-turn-helix protease inhibitory motif in a novel trypsin inhibitor from seeds of Veronica (Veronica hederifolia L.). J Biol Chem 282(38):27760–27768PubMedCrossRefGoogle Scholar
  10. Darvill AG (1984) Phytoalexins and their elicitors: a defense against microbial infection in plants. Annu Rev Plant Physiol 35:243–275CrossRefGoogle Scholar
  11. Duvick JP, Rood T, Rao AG, Marshak DR (1992) Purification and characterization of a novel antimicrobial peptide from maize (Zea mays L.) kernels. J Biol Chem 267(26):18814–18820PubMedGoogle Scholar
  12. Egorov TA, Odintsova TI, Pukhalsky VA, Grishin EV (2005) Diversity of wheat anti-microbial peptides. Peptides 26(11):2064–2073PubMedCrossRefGoogle Scholar
  13. Garcia-Olmedo F, Molina A, Alamillo JM, Rodriguez-Palenzuela P (1998) Plant defense peptides. Biopolymers 47(6):479–491PubMedCrossRefGoogle Scholar
  14. Garcia-Olmedo F, Rodriguez-Palenzuela P, Molina A, Alamillo JM, Lopez-Solanilla E, Berrocal-Lobo M, Poza-Carrion C (2001) Antibiotic activities of peptides, hydrogen peroxide and peroxynitrite in plant defence. FEBS Lett 498(2–3):219–222PubMedCrossRefGoogle Scholar
  15. Heath RL, Barton PA, Simpson RJ, Reid GE, Lim G, Anderson MA (1995) Characterization of the protease processing sites in a multidomain proteinase inhibitor precursor from Nicotiana alata. Eur J Biochem 230(1):250–257PubMedCrossRefGoogle Scholar
  16. Herbst R, Marciano-Cabral F, Leippe M (2004) Antimicrobial and pore-forming peptides of free-living and potentially highly pathogenic Naegleria fowleri are released from the same precursor molecule. J Biol Chem 279(25):25955–25958PubMedCrossRefGoogle Scholar
  17. Janzik I, Macheroux P, Amrhein N, Schaller A (2000) LeSBT1, a subtilase from tomato plants. Overexpression in insect cells, purification, and characterization. J Biol Chem 275(7):5193–5199PubMedCrossRefGoogle Scholar
  18. Jennings C, West J, Waine C, Craik D, Anderson M (2001) Biosynthesis and insecticidal properties of plant cyclotides: the cyclic knotted proteins from Oldenlandia affinis. Proc Natl Acad Sci USA 98(19):10614–10619PubMedCrossRefGoogle Scholar
  19. Kozlov SA, Vassilevski AA, Feofanov AV, Surovoy AY, Karpunin DV, Grishin EV (2006) Latarcins, antimicrobial and cytolytic peptides from the venom of the spider Lachesana tarabaevi (Zodariidae) that exemplify biomolecular diversity. J Biol Chem 281(30):20983–20992PubMedCrossRefGoogle Scholar
  20. Landon C, Barbault F, Legrain M, Guenneugues M, Vovelle F (2008) Rational design of peptides active against the gram positive bacteria Staphylococcus aureus. Proteins 72(1):229–239PubMedCrossRefGoogle Scholar
  21. LaVallie ER, DiBlasio EA, Kovacic S, Grant KL, Schendel PF, McCoy JM (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (NY) 11(2):187–193CrossRefGoogle Scholar
  22. Lay FT, Anderson MA (2005) Defensins–components of the innate immune system in plants. Curr Protein Pept Sci 6(1):85–101PubMedCrossRefGoogle Scholar
  23. Li F, Yang XX, Xia HC, Zeng R, Hu WG, Li Z, Zhang ZC (2003) Purification and characterization of Luffin P1, a ribosome-inactivating peptide from the seeds of Luffa cylindrica. Peptides 24(6):799–805PubMedCrossRefGoogle Scholar
  24. Marcus JP, Green JL, Goulter KC, Manners JM (1999) A family of antimicrobial peptides is produced by processing of a 7S globulin protein in Macadamia integrifolia kernels. Plant J 19(6):699–710PubMedCrossRefGoogle Scholar
  25. Nolde SB, Vassilevski AA, Rogozhin EA, Barinov NA, Balashova TA, Samsonova OV, Baranov YV, Feofanov AV, Egorov TA, Arseniev AS, Grishin EV (2011) Disulfide-stabilized helical hairpin structure and activity of a novel antifungal peptide EcAMP1 from seeds of barnyard grass (Echinochloa crus-galli). J Biol Chem 286(28):25145–25153PubMedCrossRefGoogle Scholar
  26. Odintsova TI, Vassilevski AA, Slavokhotova AA, Musolyamov AK, Finkina EI, Khadeeva NV, Rogozhin EA, Korostyleva TV, Pukhalsky VA, Grishin EV, Egorov TA (2009) A novel antifungal hevein-type peptide from Triticum kiharae seeds with a unique 10-cysteine motif. FEBS J 276(15):4266–4275PubMedCrossRefGoogle Scholar
  27. Oparin PB, Mineev KS, Dunaevsky YE, Arseniev AS, Belozersky MA, Grishin EV, Egorov TA, Vassilevski AA (2012) Buckwheat trypsin inhibitor with helical hairpin structure belongs to a new family of plant defence peptides. Biochem J 446(1):69–77PubMedCrossRefGoogle Scholar
  28. Park SS, Abe K, Kimura M, Urisu A, Yamasaki N (1997) Primary structure and allergenic activity of trypsin inhibitors from the seeds of buckwheat (Fagopyrum esculentum Moench). FEBS Lett 400(1):103–107PubMedCrossRefGoogle Scholar
  29. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) Signal P 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786PubMedCrossRefGoogle Scholar
  30. Provencher SW, Glockner J (1981) Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20(1):33–37PubMedCrossRefGoogle Scholar
  31. Selitrennikoff CP (2001) Antifungal proteins. Appl Environ Microbiol 67(7):2883–2894PubMedCrossRefGoogle Scholar
  32. Sels J, Mathys J, De Coninck BM, Cammue BP, De Bolle MF (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46(11):941–950PubMedCrossRefGoogle Scholar
  33. Shlyapnikov YM, Andreev YA, Kozlov SA, Vassilevski AA, Grishin EV (2008) Bacterial production of latarcin 2a, a potent antimicrobial peptide from spider venom. Protein Expr Purif 60(1):89–95PubMedCrossRefGoogle Scholar
  34. Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23(6):1087–1088PubMedCrossRefGoogle Scholar
  35. Slavokhotova AA, Odintsova TI, Rogozhin EA, Musolyamov AK, Andreev YA, Grishin EV, Egorov TA (2011) Isolation, molecular cloning and antimicrobial activity of novel defensins from common chickweed (Stellaria media L.) seeds. Biochimie 93(3):450–456PubMedCrossRefGoogle Scholar
  36. Tailor RH, Acland DP, Attenborough S, Cammue BP, Evans IJ, Osborn RW, Ray JA, Rees SB, Broekaert WF (1997) A novel family of small cysteine-rich antimicrobial peptides from seed of Impatiens balsamina is derived from a single precursor protein. J Biol Chem 272(39):24480–24487PubMedCrossRefGoogle Scholar
  37. Terry AS, Poulter L, Williams DH, Nutkins JC, Giovannini MG, Moore CH, Gibson BW (1988) The cDNA sequence coding for prepro-PGS (prepro-magainins) and aspects of the processing of this prepro-polypeptide. J Biol Chem 263(12):5745–5751PubMedGoogle Scholar
  38. Utkina LL, Andreev YA, Rogozhin EA, Korostyleva TV, Slavokhotova AA, Oparin PB, Vassilevski AA, Grishin EV, Egorov TA, Odintsova TI (2013) Genes encoding 4-Cys antimicrobial peptides in wheat Triticum kiharae Dorof. et Migush.: multimodular structural organization, instraspecific variability, distribution and role in defence. FEBS J 280(15):3594–3608PubMedCrossRefGoogle Scholar
  39. van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162PubMedCrossRefGoogle Scholar
  40. Yamada K, Shimada T, Kondo M, Nishimura M, Hara-Nishimura I (1999) Multiple functional proteins are produced by cleaving Asn-Gln bonds of a single precursor by vacuolar processing enzyme. J Biol Chem 274(4):2563–2570PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Anna A. Slavokhotova
    • 1
    Email author
  • Eugene A. Rogozhin
    • 2
  • Alexander K. Musolyamov
    • 2
  • Yaroslav A. Andreev
    • 2
  • Peter B. Oparin
    • 2
  • Antonina A. Berkut
    • 2
  • Alexander A. Vassilevski
    • 2
  • Tsezi A. Egorov
    • 2
  • Eugene V. Grishin
    • 2
  • Tatyana I. Odintsova
    • 1
  1. 1.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussian Federation
  2. 2.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations