Skip to main content
Log in

NtERF32: a non-NIC2 locus AP2/ERF transcription factor required in jasmonate-inducible nicotine biosynthesis in tobacco

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Nicotine biosynthesis in tobacco (Nicotiana tabacum L.) is highly regulated by jasmonic acid (JA). Two nuclear loci, A and B (renamed NIC1 and NIC2) have been identified that mediate JA-inducible nicotine formation and total alkaloid accumulation. NIC2 was recently shown to be a cluster of seven genes encoding Apetala2/Ethylene-Response Factor (AP2/ERF)-domain transcription factors (TFs) in Group IX of the tobacco AP2/ERF family. Here we report the characterization of several NtERF TF genes that are not within the NIC2 locus, but required for methyl JA (MeJA)—induced nicotine biosynthesis. Expression of NtERF1, NtERF32, and NtERF121 is rapidly induced (<30 min) by MeJA treatment. All three of these TFs specifically bind the GCC box-like element of the GAG motif required for MeJA-induced transcription of NtPMT1a, a gene encoding putrescine N-methyltransferase, the first committed step in the synthesis of the nicotine pyrrolidine ring. Ectopic overexpression of NtERF32 increases expression of NtPMT1a in vivo and elevates total alkaloid contents, whereas RNAi-mediated knockdown of NtERF32 reduces the mRNA levels of multiple genes in the nicotine biosynthetic pathway including NtPMT1a and quinolinate phosphoribosyltransferase (NtQPT2), and lowers nicotine and total alkaloid levels. We conclude that NtERF32 and related ERF genes are important non-NIC2 locus associated transcriptional regulators of nicotine and total alkaloid formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baldwin IT (2010) Plant volatiles. Curr Biol 20:R392–R397

    Article  PubMed  CAS  Google Scholar 

  • Baldwin IT, Preston CA (1999) The eco-physiological complexity of plant responses to insect herbivores. Planta 208:137–145

    Article  CAS  Google Scholar 

  • Baldwin IT, Schmelz EA, Ohnmeiss TE (1994) Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris spegazzini and comes. J Chem Ecol 20:2139–2157

    Article  PubMed  CAS  Google Scholar 

  • Baldwin IT, Schmelz EA, Zhang ZP (1996) Effects of octadecanoid metabolites and inhibitors on induced nicotine accumulation in Nicotiana sylvestris. J Chem Ecol 22:61–74

    Article  PubMed  CAS  Google Scholar 

  • Baldwin IT, Zhang ZP, Diab N, Ohnmeiss TE, McCloud ES, Lynds GY, Schmelz EA (1997) Quantification, correlations and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta 201:397–404

    Article  CAS  Google Scholar 

  • Cane KA, Mayer M, Lidgett AJ, Michael AJ, Hamill JD (2005) Molecular analysis of alkaloid metabolism in AABB v. aabb genotype Nicotiana tabacum in response to wounding of aerial tissues and methyl jasmonate treatment of cultured roots. Funct Plant Biol 32:305–320

    Article  CAS  Google Scholar 

  • Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671

    Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  PubMed  CAS  Google Scholar 

  • Davies PJ (ed) (2010) Plant hormones, 3 biosynthesis, signal transduction, action. Springer, Netherlands

    Google Scholar 

  • Dawson RF (1942) Accumulation of nicotine in reciprocal grafts of tomato and tobacco. Am J Bot 29:66–71

    Article  CAS  Google Scholar 

  • De Boer K, Tilleman S, Pauwels L, Vanden Bossche R, De Sutter V, Vanderhaeghen R, Hilson P, Hamill JD, Goossens A (2011) APETALA2/ETHYLENE RESPONSE FACTOR and basic helix–loop–helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis. Plant J 66:1053–1065

    Article  PubMed  Google Scholar 

  • De Luca V, St Pierre B (2000) The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci 5:168–173

    Article  PubMed  Google Scholar 

  • De Sutter V, Vanderhaeghen R, Tilleman S, Lammertyn F, Vanhoutte I, Karimi M, Inze D, Goossens A, Hilson P (2005) Exploration of jasmonate signalling via automated and standardized transient expression assays in tobacco cells. Plant J 44:1065–1076

    Article  PubMed  Google Scholar 

  • DeBoer K, Lye J, Aitken C, Su A, Hamill JD (2009) The A622 gene in Nicotiana glauca (tree tobacco): evidence for a functional role in pyridine alkaloid synthesis. Plant Mol Biol 69:299–312

    Article  PubMed  CAS  Google Scholar 

  • DeBoer KD, Dalton HL, Edward FJ, Hamill JD (2011) RNAi-mediated down-regulation of ornithine decarboxylase (ODC) leads to reduced nicotine and increased anatabine levels in transgenic Nicotiana tabacum L. Phytochemistry 72:344–355

    Article  PubMed  CAS  Google Scholar 

  • Devoto A, Turner JG (2003) Regulation of jasmonate-mediated plant responses in arabidopsis. Ann Bot 92:329–337

    Article  PubMed  CAS  Google Scholar 

  • El-Sharkawy I, Sherif S, Mila I, Bouzayen M, Jayasankar S (2009) Molecular characterization of seven genes encoding ethylene-responsive transcriptional factors during plum fruit development and ripening. J Exp Bot 60:907–922

    Article  PubMed  CAS  Google Scholar 

  • Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol 52:29–66

    Article  PubMed  CAS  Google Scholar 

  • Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase-inhibitors. Plant Cell 4:129–134

    PubMed  CAS  Google Scholar 

  • Fernández-Calvo P et al (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–715

    Article  PubMed  Google Scholar 

  • Fischer U, Dröge-Laser W (2004) Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus. Mol Plant Microbe Interact 17:1162–1171

    Article  PubMed  CAS  Google Scholar 

  • Goossens A et al (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci USA 100:8595–8600

    Article  PubMed  CAS  Google Scholar 

  • Halitschke R, Baldwin I (2004) Jasmonates and related compounds in plant-insect interactions. J Plant Growth Regul 23:238–245

    CAS  Google Scholar 

  • Hashimoto T, Yamada Y (1994) Alkaloid biogenesis—molecular aspects. Annu Rev Plant Physiol Plant Mol Biol 45:257–285

    Article  CAS  Google Scholar 

  • Hibi N, Fujita T, Hatano M, Hashimoto T, Yamada Y (1992) Putrescine N-methyltransferase in cultured roots of Hyoscyamus albus. Plant Physiol 100:826–835

    Article  PubMed  CAS  Google Scholar 

  • Hibi N, Higashiguchi S, Hashimoto T, Yamada Y (1994) Gene expression in tobacco low-nicotine mutants. Plant Cell 6:723–735

    PubMed  CAS  Google Scholar 

  • Hildreth SB et al (2011) Tobacco nicotine uptake permease (NUP1) affects alkaloid metabolism. Proc Natl Acad Sci USA 108:18179–18184

    Article  PubMed  CAS  Google Scholar 

  • Hou X, Lee LYC, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19:884–894

    Article  PubMed  CAS  Google Scholar 

  • Howe GA (2010) Jasmonates. In: Davies PJ (ed) Plant hormones; biosynthesis, signal transduction, action!. Springer, Netherlands, pp 646–680

    Google Scholar 

  • Imanishi S, Hashizume K, Nakakita M, Kojima H, Matsubayashi Y, Hashimoto T, Sakagami Y, Yamada Y, Nakamura K (1998) Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures. Plant Mol Biol 38:1101–1111

    Article  PubMed  CAS  Google Scholar 

  • Jackson DM, Johnson AW, Stephenson MG (2002) Survival and development of Heliothis virescens (Lepidoptera: Noctuidae) larvae on isogenic tobacco lines with different levels of alkaloids. J Econ Entomol 95:1294–1302

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) Gus fusions—β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Kajikawa M, Hirai N, Hashimoto T (2009) A PIP-family protein is required for biosynthesis of tobacco alkaloids. Plant Mol Biol 69:287–298

    Article  PubMed  CAS  Google Scholar 

  • Kajikawa M, Shoji T, Kato A, Hashimoto T (2011) Vacuole-localized berberine bridge enzyme-like proteins are required for a late step of nicotine biosynthesis in tobacco. Plant Physiol 155:2010–2022

    Article  PubMed  CAS  Google Scholar 

  • Katoh K, Misawa K, Kuma KI, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl Acids Res 30:3059–3066

    Article  PubMed  CAS  Google Scholar 

  • Katsir L, Chung HS, Koo AJK, Howe GA (2008) Jasmonate signaling: a conserved mechanism of hormone sensing. Curr Opin Plant Biol 11:428–435

    Article  PubMed  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328

    Article  PubMed  CAS  Google Scholar 

  • Kessler A, Halitschke R, Baldwin IT (2004) Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305:665–668

    Article  PubMed  CAS  Google Scholar 

  • Kidd S, Melillo A, Lu R-H, Reed D, Kuno N, Uchida K, Furuya M, Jelesko J (2006) The A and B loci in tobacco regulate a network of stress response genes, few of which are associated with nicotine biosynthesis. Plant Mol Biol 60:699–716

    Article  PubMed  CAS  Google Scholar 

  • Legg PD, Collins GB (1971) Inheritance of per cent total alkaloids in Nicotiana tabacum L. II. Genetic effects of two loci in Burley 21 × LA Burley 21 populations. Can J Genet Cytol 13:287–291

    Google Scholar 

  • Legg PD, Chaplin JF, Collins GB (1969) Inheritance of percent total alkaloids in Nicotiana tabacum L.; populations derived from crosses of low alkaloid lines with burley and flue-cured varieties. J Hered 60:213–217

    Google Scholar 

  • Memelink J, Verpoorte R, Kijne JW (2001) ORCAnization of jasmonate—responsive gene expression in alkaloid metabolism. Trends Plant Sci 6:212–219

    Article  PubMed  CAS  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta Gene Reg Mech 1819:86–96

    Article  CAS  Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell-line as the Hela-cell in the cell biology of higher plants. Int Rev Cytol Surv Cell Biol 132:1–30

    Article  CAS  Google Scholar 

  • Nakano T, Nishiuchi T, Suzuki K, Fujimura T, Shinshi H (2006) Studies on transcriptional regulation of endogenous genes by ERF2 transcription factor in tobacco cells. Plant Cell Physiol 47:554–558

    Article  PubMed  CAS  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA-binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    PubMed  CAS  Google Scholar 

  • Onate-Sanchez L, Anderson JP, Young J, Singh KB (2007) AtERF14, a member of the ERF family of transcription factors, plays a nonredundant role in plant defense. Plant Physiol 143:400–409

    Article  PubMed  CAS  Google Scholar 

  • Pauw B, Memelink J (2004) Jasmonate-responsive gene expression. J Plant Growth Regul 23:200–210

    CAS  Google Scholar 

  • Pauwels L, Goossens A (2011) The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–3100

    Article  PubMed  CAS  Google Scholar 

  • Pauwels L et al (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–791

    Article  PubMed  CAS  Google Scholar 

  • Penninckx I, Thomma B, Buchala A, Metraux JP, Broekaert WF (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103–2113

    PubMed  CAS  Google Scholar 

  • Rao MV, Lee HI, Creelman RA, Mullet JE, Davis KR (2000) Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. Plant Cell 12:1633–1646

    PubMed  CAS  Google Scholar 

  • Reed DG, Jelesko JG (2004) The A and B loci of Nicotiana tabacum have non-equivalent effects on the mRNA levels of four alkaloid biosynthetic genes. Plant Sci 167:1123–1130

    Article  CAS  Google Scholar 

  • Reinbothe S, Reinbothe C, Parthier B (1993) Methyl jasmonate-regulated translation of nuclear-encoded chloroplast proteins in barley (Hordeum vulgare L. cv. salome). J Biol Chem 268:10606–10611

    PubMed  CAS  Google Scholar 

  • Reinbothe C, Springer A, Samol I, Reinbothe S (2009) Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. FEBS J 276:4666–4681

    Article  PubMed  CAS  Google Scholar 

  • Riechers DE, Timko MP (1999) Structure and expression of the gene family encoding putrescine N-methyltransferase in Nicotiana tabacum: new clues to the evolutionary origin of cultivated tobacco. Plant Mol Biol 41:387–401

    Article  PubMed  CAS  Google Scholar 

  • Rushton PJ, Reinstadler A, Lipka V, Lippok B, Somssich IE (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell 14:749–762

    Article  PubMed  CAS  Google Scholar 

  • Rushton P, Bokowiec M, Laudeman T, Brannock J, Chen X, Timko M (2008a) TOBFAC: the database of tobacco transcription factors. BMC Bioinformatics 9:53

    Article  PubMed  Google Scholar 

  • Rushton PJ, Bokowiec MT, Han S, Zhang H, Brannock JF, Chen X, Laudeman TW, Timko MP (2008b) Tobacco transcription factors: novel insights into transcriptional regulation in the Solanaceae. Plant Physiol 147:280–295

    Article  PubMed  CAS  Google Scholar 

  • Ryan SM, Cane KA, DeBoer KD, Sinclair SJ, Brimblecombe R, Hamill JD (2012) Structure and expression of the quinolinate phosphoribosyltransferase (QPT) gene family in Nicotiana. Plant Sci 188–189:102–110

    Article  PubMed  Google Scholar 

  • Sachan N, Falcone DL (2002) Wound-induced gene expression of putrescine N-methyltransferase in leaves of Nicotiana tabacum. Phytochemistry 61:797–805

    Article  PubMed  CAS  Google Scholar 

  • Saitoh F, Noma M, Kawashima N (1985) The alkaloid contents of sixty Nicotiana species. Phytochemistry 24:477–480

    Article  CAS  Google Scholar 

  • Saunders JW, Bush LP (1979) Nicotine biosynthetic enzyme activities in Nicotiana tabacum L. genotypes with different alkaloid levels. Plant Physiol 64:236–240

    Article  PubMed  CAS  Google Scholar 

  • Sheard LB et al (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405

    Article  PubMed  CAS  Google Scholar 

  • Shoji T, Hashimoto T (2008) Why does anatabine, but not nicotine, accumulate in jasmonate-elicited cultured tobacco BY-2 cells? Plant Cell Physiol 49:1209–1216

    Article  PubMed  CAS  Google Scholar 

  • Shoji T, Hashimoto T (2011a) Recruitment of a duplicated primary metabolism gene into the nicotine biosynthesis regulon in tobacco. Plant J 67:949–959

    Article  PubMed  CAS  Google Scholar 

  • Shoji T, Hashimoto T (2011b) Tobacco MYC2 regulates jasmonate-inducible nicotine biosynthesis genes directly and by way of the NIC2-locus ERF genes. Plant Cell Physiol 52:1117–1130

    Article  PubMed  CAS  Google Scholar 

  • Shoji T, Hashimoto T (2012) DNA-binding and transcriptional activation properties of tobacco NIC2-locus ERF189 and related transcription factors. Plant Biotechnol J 29:35–42

    Article  CAS  Google Scholar 

  • Shoji T, Yamada Y, Hashimoto T (2000) Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris. Plant Cell Physiol 41:831–839

    Article  PubMed  CAS  Google Scholar 

  • Shoji T, Ogawa T, Hashimoto T (2008) Jasmonate-induced nicotine formation in tobacco is mediated by tobacco COI1 and JAZ genes. Plant Cell Physiol 49:1003–1012

    Article  PubMed  CAS  Google Scholar 

  • Shoji T, Kajikawa M, Hashimoto T (2010) Clustered transcription factor genes regulate nicotine biosynthesis in tobacco. Plant Cell 22:3390–3409

    Article  PubMed  CAS  Google Scholar 

  • Sinclair SJ, Murphy KJ, Birch CD, Hamill JD (2000) Molecular characterization of quinolinate phosphoribosyltransferase (QPRTase) in Nicotiana. Plant Mol Biol 44:603–617

    Article  PubMed  CAS  Google Scholar 

  • Sisson VA, Severson RF (1990) Alkaloid composition of the Nicotiana species. Beiträge zur Tabakforschung International 14:327–339

    CAS  Google Scholar 

  • Skibbe M, Qu N, Galis I, Baldwin IT (2008) Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. Plant Cell 20:1984–2000

    Article  PubMed  CAS  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE (2008) JAZing up jasmonate signaling. Trends Plant Sci 13:66–71

    Article  PubMed  CAS  Google Scholar 

  • Steppuhn A, Gase K, Krock B, Halitschke R, Baldwin IT (2004) Nicotine’s defensive function in nature. PLoS Biol 2:1074–1080

    Article  CAS  Google Scholar 

  • Subramanian C, Woo J, Cai X, Xu X, Servick S, Johnson CH, Nebenfuhr A, von Arnim AG (2006) A suite of tools and application notes for in vivo protein interaction assays using bioluminescence resonance energy transfer (BRET). Plant J 48:138–152

    Article  PubMed  CAS  Google Scholar 

  • Thines B et al (2007) JAZ repressor proteins are targets of the SCFCO11 complex during jasmonate signalling. Nature 448:U661–U662

    Article  Google Scholar 

  • Thurston R, Smith WT, Cooper BP (1966) Alkaloid secretion by trichomes of Nicotiana species and resistance to aphids. Entomol Exp Appl 9:428–432

    Article  CAS  Google Scholar 

  • Todd AT, Liu E, Polvi SL, Pammett RT, Page JE (2010) A functional genomics screen identifies diverse transcription factors that regulate alkaloid biosynthesis in Nicotiana benthamiana. Plant J 62:589–600

    Article  PubMed  CAS  Google Scholar 

  • van der Fits L, Memelink J (2001) The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. Plant J 25:43–53

    Article  PubMed  Google Scholar 

  • Vanlerberghe GC, McIntosh L (1994) Mitochondrial electron transport regulation of nuclear gene expression (studies with the alternative oxidase gene of tobacco). Plant Physiol 105:867–874

    Article  PubMed  CAS  Google Scholar 

  • Vidal G, Ribas-Carbo M, Garmier M, Dubertret G, Rasmusson AG, Mathieu C, Foyer CH, De Paepe R (2007) Lack of respiratory chain complex I impairs alternative oxidase engagement and modulates redox signaling during elicitor-induced cell death in tobacco. Plant Cell 19:640–655

    Article  PubMed  CAS  Google Scholar 

  • Voelckel C, Krugel T, Gase K, Heidrich N, van Dam NM, Winz R, Baldwin IT (2001) Anti-sense expression of putrescine N-methyltransferase confirms defensive role of nicotine in Nicotiana sylvestris against Manduca sexta. Chemoecology 11:121–126

    Article  CAS  Google Scholar 

  • Vom Endt D, Soares e Silva M, Kijne JW, Pasquali G and Memelink J (2007) Identification of a bipartite jasmonate-responsive promoter element in the periwinkle ORCA3 transcription factor gene which interacts specifically with AT-hook DNA-binding proteins. Plant Physiol pp.107.096115

  • Weber H, Vick BA, Farmer EE (1997) Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. Proc Natl Acad Sci USA 94:10473–10478

    Article  PubMed  CAS  Google Scholar 

  • Wink M, Schmeller T, Latz-Bruning B (1998) Modes of action of allelochemical alkaloids: interaction with neuroreceptors, DNA, and other molecular targets. J Chem Ecol 24:1881–1937

    Article  CAS  Google Scholar 

  • Wu M, Chatterji S, Eisen JA (2012) Accounting for alignment uncertainty in phylogenomics. PLoS ONE 7:e30288. doi:30210.31371/journal.pone.0030288

    Article  PubMed  CAS  Google Scholar 

  • Xu BF, Timko MP (2004) Methyl jasmonate induced expression of the tobacco putrescine N-methyltransferase genes requires both G-box and GCC-motif elements. Plant Mol Biol 55:743–761

    Article  PubMed  CAS  Google Scholar 

  • Xu B, Sheehan MJ, Timko MP (2004) Differential induction of ornithine decarboxylase (ODC) gene family members in transgenic tobacco (Nicotiana tabacum L. cv. Bright Yellow 2) cell suspensions by methyl-jasmonate treatment. J Plant Growth Regul 44:101–116

    Article  CAS  Google Scholar 

  • Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y (2009) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot 60:3781–3796

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Hedhili S, Montiel G, Zhang Y, Chatel G, Pré M, Gantet P, Memelink J (2011) The basic helix–loop–helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes regulating alkaloid biosynthesis in Catharanthus roseus. Plant J 52:578–587

    Google Scholar 

  • Zhang H, Bokowiec MT, Rushton PJ, Han S, Timko MP (2012) Tobacco transcription factors NtMYC2a and NtMYC2b form nuclear complexes with the NtJAZ1 repressor and regulate multiple jasmonate-inducible steps in nicotine biosynthesis. Mol Plant 5:73–84

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jennifer Murphy, Matthew Kastner, Logan Breaud, Ryan Thompson and Ashley Taylor for technical support. We also thank Alain Goossens and Sofie Tilleman for providing the tobacco BY-2 cell culture line, and Chengalrayan Kudithipudi and Alec Hayes for helpful comments. The authors are responsible for the content of the work and distribution of materials integral to the findings presented in this article. This work was supported in part by a grant from Altria Client Services, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Timko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1273 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sears, M.T., Zhang, H., Rushton, P.J. et al. NtERF32: a non-NIC2 locus AP2/ERF transcription factor required in jasmonate-inducible nicotine biosynthesis in tobacco. Plant Mol Biol 84, 49–66 (2014). https://doi.org/10.1007/s11103-013-0116-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0116-2

Keywords

Navigation