Plant Molecular Biology

, Volume 83, Issue 4–5, pp 303–315 | Cite as

Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice

  • Rupesh K. Deshmukh
  • Julien Vivancos
  • Valérie Guérin
  • Humira Sonah
  • Caroline Labbé
  • François Belzile
  • Richard R. Bélanger
Article

Abstract

Silicon (Si) confers several benefits to many plant species when absorbed as silicic acid through nodulin 26-like intrinsic proteins (NIPs). The NIPs belong to major intrinsic protein (MIP) family, members of which form channels with high selectivity to control transport of water and different solutes. Here, comparative genomic analysis of the MIPs was performed to investigate the presence of Si transporter MIPs in soybean. Thorough analysis of phylogeny, gene organization, transcriptome profiling and protein modeling was performed to characterize MIPs in rice, Arabidopsis and soybean. Based on several attributes, two putative Si transporter genes, GmNIP2-1 and GmNIP2-2, were identified, characterized and cloned from soybean. Expression of both genes was detected in shoot and root tissues, and decreased as Si increased. The protein encoded by GmNIP2-2 showed functionality for Si transport when expressed in Xenopus oocytes, thus confirming the genetic capability of soybean to absorb the element. Comparative analysis of MIPs in plants provides opportunities to decipher gene evolution, functionality and selectivity of nutrient uptake mechanisms. Exploitation of this strategy has helped to uncover unique features of MIPs in soybean. The identification and functional characterization of Si transporters can be exploited to optimize the benefits that plants can derive from Si absorption.

Keywords

Aquaporin Nodulin 26-like intrinsic protein Silicon transporter Soybean genome Xenopus oocytes 

Supplementary material

11103_2013_87_MOESM1_ESM.docx (150 kb)
Supplementary material 1 (DOCX 150 kb)
11103_2013_87_MOESM2_ESM.docx (5.3 mb)
Supplementary material 2 (DOCX 5447 kb)

References

  1. Arsenault-Labrecque G, Menzies JG, Bélanger RR (2012) Effect of silicon absorption on soybean resistance to Phakopsora pachyrhizi in different cultivars. Plant Dis 96(1):37–42CrossRefGoogle Scholar
  2. Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34(Suppl 2):W369–W373PubMedCrossRefGoogle Scholar
  3. Bernsel A, Viklund H, Hennerdal A, Elofsson A (2009) TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res 37(Suppl 2):W465–W468PubMedCrossRefGoogle Scholar
  4. Bienert GP, Bienert MD, Jahn TP, Boutry M, Chaumont F (2011) Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. Plant J 66(2):306–317PubMedCrossRefGoogle Scholar
  5. Caron L, Rousseau F, Gagnon E, Isenring P (2000) Cloning and functional characterization of a cation Cl cotransporter-interacting protein. J Biol Chem 275(41):32027–32036PubMedCrossRefGoogle Scholar
  6. de Hoon MJ, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20(9):1453–1454PubMedCrossRefGoogle Scholar
  7. Dean RM, Rivers RL, Zeidel ML, Roberts DM (1999) Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Biochemistry 38(1):347–353PubMedCrossRefGoogle Scholar
  8. Deren CW (2001) Plant genotype, silicon concentration, and silicon-related responses. Stud Plant Sci 8:149–158CrossRefGoogle Scholar
  9. Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci USA 91:11–17PubMedCrossRefGoogle Scholar
  10. Fauteux F, Rémus-Borel W, Menzies JG, Bélanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249(1):1–6PubMedCrossRefGoogle Scholar
  11. Fortin MG, Morrison NA, Verma DP (1987) Nodulin 26, a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment. Nucleic Acids Res 15(2):813–824PubMedCrossRefGoogle Scholar
  12. Fouquet R, Léon C, Ollat N, Barrieu F (2008) Identification of grapevine aquaporins and expression analysis in developing berries. Plant Cell Rep 27(9):1541–1550PubMedCrossRefGoogle Scholar
  13. Froger A, Thomas D, Delamarche C, Tallur B (1998) Prediction of functional residues in water channels and related proteins. Protein Sci 7(6):1458–1468PubMedCrossRefGoogle Scholar
  14. Gattolin S, Sorieul M, Frigerio L (2011) Mapping of tonoplast intrinsic proteins in maturing and germinating Arabidopsis seeds reveals dual localization of embryonic TIPs to the tonoplast and plasma membrane. Mol Plant 4(1):180–189PubMedCrossRefGoogle Scholar
  15. Giovannetti M, Balestrini R, Volpe V, Guether M, Straub D, Costa A, Ludewig U, Bonfante P (2012) Two putative-aquaporin genes are differentially expressed during arbuscular mycorrhizal symbiosis in Lotus japonicus. BMC Plant Biol 12(1):186PubMedCrossRefGoogle Scholar
  16. Gonen T, Sliz P, Kistler J, Cheng Y, Walz T (2004) Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429(6988):193–197PubMedCrossRefGoogle Scholar
  17. Grégoire C, Rémus-Borel W, Vivancos J, Labbé C, Belzile F, Bélanger RR (2012) Discovery of a multigene family of aquaporin silicon transporters in the primitive plant Equisetum arvense. Plant J72(2):320–330Google Scholar
  18. Guntzer F, Keller C, Meunier JD (2012) Benefits of plant silicon for crops: a review. Agron Sustain Dev 32(1):201–213CrossRefGoogle Scholar
  19. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  20. Harries WEC, Akhavan D, Miercke LJW, Khademi S, Stroud RM (2004) The channel architecture of aquaporin 0 at a 2.2-A resolution. Proc Natl Acad Sci USA 101:14045–14050PubMedCrossRefGoogle Scholar
  21. Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96(6):1027–1046PubMedCrossRefGoogle Scholar
  22. Kaczanowski S, Zielenkiewicz P (2010) Why similar protein sequences encode similar three-dimensional structures? Theor Chem Acc Theory Comput Model (Theoretica Chimica Acta) 125:643–650Google Scholar
  23. Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9(4):299–306PubMedCrossRefGoogle Scholar
  24. Lee JK, Kozono D, Remis J, Kitagawa Y, Agre P, Stroud RM (2005) Structural basis for conductance by the archaeal aquaporin AqpM at 1.68 A. Proc Natl Acad Sci USA 102(52):18932–18937Google Scholar
  25. Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11(8):392–397PubMedCrossRefGoogle Scholar
  26. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440(7084):688–691PubMedCrossRefGoogle Scholar
  27. Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448(7150):209–212PubMedCrossRefGoogle Scholar
  28. Matsumoto T, Lian HL, Su WA, Tanaka D, Liu C, Iwasaki I, Kitagawa Y (2009) Role of the aquaporin PIP1 subfamily in the chilling tolerance of rice. Plant Cell Physiol 50(2):216–229PubMedCrossRefGoogle Scholar
  29. Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Ann Rev Plant Biol 59:595–624CrossRefGoogle Scholar
  30. Mitani N, Yamaji N, Ma JF (2008) Characterization of substrate specificity of a rice silicon transporter, Lsi1. Pflügers Archiv Eur J Physiol 456(4):679–686CrossRefGoogle Scholar
  31. Mitani-Ueno N, Yamaji N, Zhao FJ, Ma JF (2011) The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Exp Bot 62(12):4391–4398PubMedCrossRefGoogle Scholar
  32. Montpetit J, Vivancos J, Mitani-Ueno N, Yamaji N, Rémus-Borel W, Belzile F, Ma FJ, Bélanger RR (2012) Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant Mol Biol 79(1–2):35–46PubMedCrossRefGoogle Scholar
  33. Newby ZE, O’Connell LJ, Robles-Colmenares Y, Khademi S, Miercke LJW, Stroud RM (2008) Crystal structure of the aquaglyceroporin PfAQP from the malarial parasite Plasmodium falciparum. Nat Struct Mol Biol 15(6):619–625PubMedCrossRefGoogle Scholar
  34. Quigley F, Rosenberg JM, Shachar-Hill Y, Bohnert HJ (2002) From genome to function: the Arabidopsis aquaporins. Genome Biol 3(1):1–17Google Scholar
  35. Reidinger S, Ramsey M, Hartley SE (2012) Rapid and accurate analyses of silicon and phosphorus in plants using a portable X-ray fluorescence spectrometer. New Phytol 195(3):699–706PubMedCrossRefGoogle Scholar
  36. Richmond KE, Sussman M (2003) Got silicon? The non-essential beneficial plant nutrient. Curr Opin Plant Biol 6(3):268–272PubMedCrossRefGoogle Scholar
  37. Roulin A, Auer PL, Libault M, Schlueter J, Farmer A, May G, Stacey G, Doerge RW, Jackson SA (2013) The fate of duplicated genes in a polyploid plant genome. Plant J73(1):143–153Google Scholar
  38. Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46(9):1568–1577PubMedCrossRefGoogle Scholar
  39. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178–183PubMedCrossRefGoogle Scholar
  40. Severin AJ, Woody JL, Bolon YT, Joseph B, Diers BW, Farmer AD, Muehlbauer GJ, Nelson RT, Grant D, Specht JE et al (2010) RNA-Seq Atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol 10(10):160PubMedCrossRefGoogle Scholar
  41. Shen X, Li X, Li Z, Li J, Duan L, Eneji AE (2010) Growth, physiological attributes and antioxidant enzyme activities in soybean seedlings treated with or without silicon under UV-B radiation stress. J Agron Crop Sci 196(6):431–439CrossRefGoogle Scholar
  42. Sonah H, Deshmukh RK, Singh VP, Gupta DK, Singh NK, Sharma TR (2011) Genomic resources in horticultural crops: status, utility and challenges. Biotech Adv 29(2):199–209CrossRefGoogle Scholar
  43. Wallace IS, Roberts DM (2005) Distinct transport selectivity of two structural subclasses of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels. Biochemistry 44(51):16826–16834PubMedCrossRefGoogle Scholar
  44. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(Suppl 2):W407–W410PubMedCrossRefGoogle Scholar
  45. Zhang DY, Ali Z, Wang CB, Xu L, Yi JX, Xu ZL, Liu XQ, He XL, Huang YH, Khan IA et al (2013) Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.). PLoS ONE 8(2):e56312CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Rupesh K. Deshmukh
    • 1
  • Julien Vivancos
    • 1
  • Valérie Guérin
    • 1
  • Humira Sonah
    • 1
  • Caroline Labbé
    • 1
  • François Belzile
    • 1
  • Richard R. Bélanger
    • 1
  1. 1.Département de Phytologie, Faculté des Sciences de l’Agriculture et de l’Alimentation, Centre de Recherche en HorticultureUniversité LavalQuebecCanada

Personalised recommendations