Plant Molecular Biology

, Volume 83, Issue 3, pp 279–285 | Cite as

TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants

  • Toni Wendt
  • Preben Bach Holm
  • Colby G. Starker
  • Michelle Christian
  • Daniel F. Voytas
  • Henrik Brinch-Pedersen
  • Inger Bæksted Holme
Brief Communication

Abstract

Transcription activator-like effector nucleases (TALENs) enable targeted mutagenesis in a variety of organisms. The primary advantage of TALENs over other sequence-specific nucleases, namely zinc finger nucleases and meganucleases, lies in their ease of assembly, reliability of function, and their broad targeting range. Here we report the assembly of several TALENs for a specific genomic locus in barley. The cleavage activity of individual TALENs was first tested in vivo using a yeast-based, single-strand annealing assay. The most efficient TALEN was then selected for barley transformation. Analysis of the resulting transformants showed that TALEN-induced double strand breaks led to the introduction of short deletions at the target site. Additional analysis revealed that each barley transformant contained a range of different mutations, indicating that mutations occurred independently in different cells.

Keywords

TAL effector nucleases Targeted mutagenesis Hordeum vulgare Cereal transformation TALEN 

Supplementary material

11103_2013_78_MOESM1_ESM.pdf (89 kb)
Supplementary material 1 (PDF 88 kb)

References

  1. Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug Ii RG, Tan W, Penheiter SG, Ma AC, Leung AYH, Fahrenkrug SC, Carlson DF, Voytas DF, Clark KJ, Essner JJ, Ekker SC (2012) In vivo genome editing using a high-efficiency TALEN system. Nature 491(7422):114–118. doi:10.1038/nature11537 PubMedCrossRefGoogle Scholar
  2. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846. doi:10.1126/science.1204094 PubMedCrossRefGoogle Scholar
  3. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39(12):e82. doi:10.1093/nar/gkr218 PubMedCrossRefGoogle Scholar
  4. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761. doi:10.1534/genetics.110.120717 PubMedCrossRefGoogle Scholar
  5. Christian ML, Demorest ZL, Starker CG, Osborn MJ, Nyquist MD, Zhang Y, Carlson DF, Bradley P, Bogdanove AJ, Voytas DF (2012) Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable di-residues. PLoS ONE 7(9):e45383. doi:10.1371/journal.pone.0045383 PubMedCrossRefGoogle Scholar
  6. Dahlem TJ, Hoshijima K, Jurynec MJ, Gunther D, Starker CG, Locke AS, Weis AM, Voytas DF, Grunwald DJ (2012) Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet 8:e1002861. doi:10.1371/journal.pgen.1002861 PubMedCrossRefGoogle Scholar
  7. Dionisio G, Madsen CK, Holm PB, Welinder KG, Jørgensen M, Stroger E, Arcalis E, Brinch-Pedersen H (2011) Cloning and characterization of purple acid phosphatase phytases from wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), maize (Zea maize L.) and rice (Oryza sativa L.). Plant Physiol 156(3):1087–1100. doi:10.1104/pp.110.164756 PubMedCrossRefGoogle Scholar
  8. Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, VanDyk JK, Bogdanove AJ (2012) TAL effector-nucleotide targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 40(W1):W117–W122. doi:10.1093/nar/gks608 PubMedCrossRefGoogle Scholar
  9. Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF, Miller JC, Urnov FD, Gregory PD, Holmes MC (2011) Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Meth 8:74–79. doi:10.1038/nmeth.1539 CrossRefGoogle Scholar
  10. Epinat JC, Arnould S, Chames P, Rochaix P, Desfontaines D, Puzin C, Patin A, Zanghellini A, Pâques F, Lacroix E (2003) A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res 31(11):2952–2962. doi:10.1093/nar/gkg375 PubMedCrossRefGoogle Scholar
  11. Gietz RD, Triggs-Raine B, Robbins A, Graham KC, Woods RA (1997) Identification of proteins that interact with a protein of interest: applications of the yeast two-hybrid system. Mol Cell Biochem 172(1):67–79. doi:10.1023/a:1006859319926 PubMedCrossRefGoogle Scholar
  12. Holme IB, Dionisio G, Brinch-Pedersen H, Wendt T, Madsen CK, Vincze E, Holm PB (2012) Cisgenic barley with improved phytase activity. Plant Biotechnol J 10(2):237–247. doi:10.1111/j.1467-7652.2011.00660.x PubMedCrossRefGoogle Scholar
  13. Jeon J-S, Lee S, Jung K-H, Jun S-H, Jeong D-H, Lee J, Kim C, Jang S, Lee S, Yang K, Nam J, An K, Han M-J, Sung R-J, Choi H-S, Yu J-H, Choi J-H, Cho S-Y, Cha S–S, Kim S-I, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570. doi:10.1046/j.1365-313x.2000.00767.x PubMedCrossRefGoogle Scholar
  14. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. doi:10.1126/science.1225829 PubMedCrossRefGoogle Scholar
  15. Karimi M, Inzé D, Depicker A (2002) Gateway vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7(5):193–195PubMedCrossRefGoogle Scholar
  16. Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotech 30(5):390–392. doi:10.1038/nbt.2199 CrossRefGoogle Scholar
  17. Madsen CK, Dionisio G, Holme IB, Holm PB, Brinch-Pedersen H (2013) High mature grain phytase activity in the Triticeae has evolved by duplication followed by neofunctionalization of the purple acid phosphatase phytase (PAPhy) gene. J Exp Bot. (accepted)Google Scholar
  18. Matzke MA, Matzke AJM, Pruss GJ, Vance VB (2001) RNA-based silencing strategies in plants. Curr Opin Genet Dev 11:221–227. doi:10.1016/S0959-437X(00)00183-0 PubMedCrossRefGoogle Scholar
  19. Miller JC, Holmes MC, Wang J, Guschin DY, Lee Y-L, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotech 25:778–785. doi:10.1038/nbt1319 CrossRefGoogle Scholar
  20. Park SH, Lee B-M, Salas MG, Srivatanakul M, Smith RH (2000) Shorter T-DNA or additional virulence genes improve Agrobacterium-mediated transformation. Theor Appl Genet 101(7):1015–1020. doi:10.1007/s001220051575 CrossRefGoogle Scholar
  21. Puchta H, Hohn B (2010) Breaking news: plants mutate right on target. Proc Natl Acad Sci 107(26):11657–11658. doi:10.1073/pnas.1006364107 PubMedCrossRefGoogle Scholar
  22. Schulte D, Close TJ, Graner A, Langridge P, Matsumoto T, Muehlbauer G, Sato K, Schulman AH, Waugh R, Wise RP, Stein N (2009) The international barley sequencing consortium—at the threshold of efficient access to the barley genome. Plant Physiol 149:142–147. doi:10.1104/pp.108.128967 PubMedCrossRefGoogle Scholar
  23. Shan Q, Wang Y, Chen K, Liang Z, Li J, Zhang Y, Zhang K, Liu J, Voytas DF, Zheng X, Zhang Y, Gao C (2013) Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol Plant. doi:10.1093/mp/sss162 Google Scholar
  24. Sikora P, Chawade A, Larsson M, Olsson J, Olsson O (2011) Mutagenesis as a tool in plant genetics, functional genomics, and breeding. Int J Plant Genom. doi:10.1155/2011/314829 Google Scholar
  25. Streubel J, Blucher C, Landgraf A, Boch J (2012) TAL effector RVD specificities and efficiencies. Nat Biotech 30(7):593–595. doi:10.1038/nbt.2304 CrossRefGoogle Scholar
  26. The International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491(7426):711–716. doi:10.1038/nature11543 Google Scholar
  27. Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376. doi:10.1046/j.1365-313X.1997.11061369.x CrossRefGoogle Scholar
  28. Tong C, Huang G, Ashton C, Wu H, Yan H, Ying Q-L (2012) Rapid and cost-effective gene targeting in rat embryonic stem cells by TALENs. J Genet Genom 39:275–280. doi:10.1016/j.jgg.2012.04.004 CrossRefGoogle Scholar
  29. Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459(7245):442–445. doi:10.1038/nature07845 PubMedCrossRefGoogle Scholar
  30. Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li XH, Pierick CJ, Dobbs D, Peterson T, Joung JK, Voytas DF (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci 107:12028–12033. doi:10.1073/pnas.0914991107 PubMedCrossRefGoogle Scholar
  31. Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF (2013) TALENs enable efficient plant genome engineering. Plant Physiol 161(1):20–27. doi:10.1104/pp.112.205179 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Toni Wendt
    • 1
  • Preben Bach Holm
    • 1
  • Colby G. Starker
    • 2
  • Michelle Christian
    • 2
  • Daniel F. Voytas
    • 2
  • Henrik Brinch-Pedersen
    • 1
  • Inger Bæksted Holme
    • 1
  1. 1.Research Centre Flakkebjerg, Department of Molecular Biology and GeneticsAarhus UniversitySlagelseDenmark
  2. 2.Department of Genetics, Cell Biology and Development and Center for Genome EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations