Plant Molecular Biology

, Volume 82, Issue 3, pp 207–221 | Cite as

A rapid assay to quantify the cleavage efficiency of custom-designed nucleases in planta

  • Ross A. Johnson
  • Vyacheslav Gurevich
  • Avraham A. Levy


Custom-designed nucleases are a promising technology for genome editing through the catalysis of double-strand DNA breaks within target loci and subsequent repair by the host cell, which can result in targeted mutagenesis or gene replacement. Implementing this new technology requires a rapid means to determine the cleavage efficiency of these custom-designed proteins in planta. Here we present such an assay that is based on cleavage-dependent luciferase gene correction as part of a transient dual-luciferase® reporter (Promega) expression system. This assay consists of co-infiltrating Nicotiana benthamiana leaves with two Agrobacterium tumefaciens strains: one contains the target sequence embedded within a luciferase reporter gene and the second strain contains the custom-designed nuclease gene(s). We compared repair following site-specific nuclease digestion through non-homologous DNA end-joining, as opposed to single strand DNA annealing, as a means to restore an out-of-frame luciferase gene cleavage-reporter construct. We show, using luminometer measurements and bioluminescence imaging, that the assay for non-homologous end-joining is sensitive, quantitative, reproducible and rapid in estimating custom-designed nucleases’ cleavage efficiency. We detected cleavage by two out of three transcription activator-like effector nucleases that we custom-designed for targets in the Arabidopsis CRUCIFERIN3 gene, and we compared with the well-established ‘QQR’ zinc-finger nuclease. The assay we report requires only standard equipment and basic plant molecular biology techniques, and it can be carried out within a few days. Different types of custom-designed nucleases can be preliminarily tested in our assay system before their downstream application in plant genome editing.


DNA repair Genome engineering Non-homologous end-joining TALENs Targeted mutagenesis ZFNs 



Gibbs energy values for DNA secondary structures


Cauliflower mosaic virus-derived 35S promoter


Arabidopsis thaliana CRUCIFERIN3 gene


Counts per second

F/shift, fs

A translational reading frame-shift mutation


Kilo base pair(s)


Gene encoding a luciferase enzyme derived from Photinus pyralis


Non-homologous end-joining


The name given to a previously-reported zinc-finger nuclease


Translational open reading frame

Recog. site

The DNA site recognized by a custom-designed nuclease


The gene encoding a luciferase enzyme derived from Renilla reniformis


Single-strand annealing


A premature stop codon


A transcription ‘terminator’ sequence


A. tumefaciens transfer-DNA


Transcription activator-like effector nuclease


Yellow fluorescent protein


Zinc-finger nuclease

Supplementary material

11103_2013_52_MOESM1_ESM.pdf (36 kb)
Online Resource 1 The sequences and applications of the oligonucleotide primer sequences that were used in the study. Supplementary material 1 (PDF 36 kb)
11103_2013_52_MOESM2_ESM.pdf (136 kb)
Online Resource 2 Assays for site-specific cleavage-induced NHEJ in response to QQR ZFN expression, which complements Fig. 2. Supplementary material 2 (PDF 136 kb)
11103_2013_52_MOESM3_ESM.pdf (21 kb)
Online Resource 3 The luciferase data from assays for NHEJ with the QQR ZFN, which complements Fig. 2 and Online Resource 2.Supplementary material 3 (PDF 22 kb)
11103_2013_52_MOESM4_ESM.pdf (93 kb)
Online Resource 4 The luciferase data from testing reporter signal levels arising from SSA, versus NHEJ, for the QQR ZFN, which complements Fig. 3.Supplementary material 4 (PDF 94 kb)
11103_2013_52_MOESM5_ESM.pdf (28 kb)
Online Resource 5 The luciferase data from comparing the cleavage efficiency of TALENs recognizing the AtCRU3 gene at T494, T852 and T1461 sites, which complements Fig. 6.Supplementary material 5 (PDF 28 kb)
11103_2013_52_MOESM6_ESM.pdf (34 kb)
Online Resource 6 The luciferase data from comparing two TALEN homodimers and their heterodimer that was custom-designed for T494 within the AtCRU3 gene, which complements Fig. 7.Supplementary material 6 (PDF 34 kb)
11103_2013_52_MOESM7_ESM.pdf (141 kb)
Online Resource 7 Quantification of firefly-derived luciferase activity in imaged leaves, which complements Fig. 8.Supplementary material 7 (PDF 141 kb)


  1. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512. doi:10.1126/science.1178811 PubMedCrossRefGoogle Scholar
  2. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39(12):e82. doi:10.1093/nar/gkr218 PubMedCrossRefGoogle Scholar
  3. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. doi:10.1126/science.1231143 PubMedCrossRefGoogle Scholar
  4. de Pater S, Neuteboom LW, Pinas JE, Hooykaas PJ, van der Zaal BJ (2009) ZFN-induced mutagenesis and gene-targeting in Arabidopsis through Agrobacterium-mediated floral dip transformation. Plant Biotechnol J 7(8):821–835. doi:10.1111/j.1467-7652.2009.00446.x PubMedCrossRefGoogle Scholar
  5. Desjarlais JR, Berg JM (1993) Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins. Proc Natl Acad Sci U S A 90(6):2256–2260PubMedCrossRefGoogle Scholar
  6. Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, VanDyk JK, Bogdanove AJ (2012) TAL effector-nucleotide targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 40(W1):W117–W122. doi:10.1093/nar/gks608 PubMedCrossRefGoogle Scholar
  7. Even-Faitelson L, Samach A, Melamed-Bessudo C, Avivi-Ragolsky N, Levy AA (2011) Localized egg-cell expression of effector proteins for targeted modification of the Arabidopsis genome. Plant J 68(5):929–937. doi:10.1111/j.1365-313X.2011.04741.x PubMedCrossRefGoogle Scholar
  8. Fauser F, Roth N, Pacher M, Ilg G, Sanchez-Fernandez R, Biesgen C, Puchta H (2012) In planta gene targeting. Proc Natl Acad Sci. doi:10.1073/pnas.1202191109 PubMedGoogle Scholar
  9. Gleave AP (1992) A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol 20:1203–1207PubMedCrossRefGoogle Scholar
  10. Gorbunova V, Levy AA (1997) Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res 25(22):4650–4657. doi:10.1093/nar/25.22.4650 PubMedCrossRefGoogle Scholar
  11. Hellens RP, Anne Edwards E, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42(6):819–832PubMedCrossRefGoogle Scholar
  12. Hellens R, Allan A, Friel E, Bolitho K, Grafton K, Templeton M, Karunairetnam S, Gleave A, Laing W (2005) Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1(1):13. doi:10.1186/1746-4811-1-13 PubMedCrossRefGoogle Scholar
  13. Johnson RA, Hellens RP, Love DR (2011) A transient assay for recombination demonstrates that Arabidopsis SNM1 and XRCC3 enhance non-homologous recombination. Genet Mol Res 10(3):2104–2132. doi:10.4238/vol10-3gmr1347 PubMedGoogle Scholar
  14. Kim Y-G, Shi Y, Berg JM, Chandrasegaran S (1997) Site-specific cleavage of DNA–RNA hybrids by zinc finger/FokI cleavage domain fusions. Gene 203(1):43–49. doi:10.1016/S0378-1119(97)00489-7 PubMedCrossRefGoogle Scholar
  15. Li L, Piatek M, Atef A, Piatek A, Wibowo A, Fang X, Sabir J, Zhu J-K, Mahfouz M (2012) Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification. Plant Mol Biol 78(4):407–416. doi:10.1007/s11103-012-9875-4 PubMedCrossRefGoogle Scholar
  16. Lloyd A, Plaisier CL, Drews GN, Carroll D (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 102(6):2232–2237PubMedCrossRefGoogle Scholar
  17. Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu J-K (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci. doi:10.1073/pnas.1019533108 PubMedGoogle Scholar
  18. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. doi:10.1126/science.1232033 PubMedCrossRefGoogle Scholar
  19. Marton I, Zuker A, Shklarman E, Zeevi V, Tovkach A, Roffe S, Ovadis M, Tzfira T, Vainstein A (2010) Nontransgenic genome modification in plant cells. Plant Physio 154(3):1079–1087. doi:10.1104/pp.110.164806 CrossRefGoogle Scholar
  20. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326(5959):1501. doi:10.1126/science.1178817 PubMedCrossRefGoogle Scholar
  21. Shaked H, Melamed-Bessudo C, Levy AA (2005) High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. PNAS 102(34):12265–12269PubMedCrossRefGoogle Scholar
  22. Shi Y, Berg JM (1995) Specific DNA–RNA hybrid binding by zinc finger proteins. Science 268(5208):282–284PubMedCrossRefGoogle Scholar
  23. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459(7245):437–441. doi:10.1038/nature07992 PubMedCrossRefGoogle Scholar
  24. Tovkach A, Zeevi V, Tzfira T (2009) A toolbox and procedural notes for characterizing novel zinc finger nucleases for genome editing in plant cells. Plant J 57(4):747–757. doi:10.1111/j.1365-313X.2008.03718.x PubMedCrossRefGoogle Scholar
  25. Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459(7245):442–445. doi:10.1038/nature07845 PubMedCrossRefGoogle Scholar
  26. Tzfira T, Weinthal D, Marton I, Zeevi V, Zuker A, Vainstein A (2012) Genome modifications in plant cells by custom-made restriction enzymes. Plant Biotechnol J 10(4):373–389. doi:10.1111/j.1467-7652.2011.00672.x PubMedCrossRefGoogle Scholar
  27. Weinthal D, Tovkach A, Zeevi V, Tzfira T (2010) Genome editing in plant cells by zinc finger nucleases. Trends Plant Sci 15(6):308–321PubMedCrossRefGoogle Scholar
  28. Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF (2012) TALENs enable efficient plant genome engineering. Plant Physiol. doi:10.1104/pp.112.205179 Google Scholar
  29. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415. doi:10.1093/nar/gkg595 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ross A. Johnson
    • 1
  • Vyacheslav Gurevich
    • 1
  • Avraham A. Levy
    • 1
  1. 1.Department of Plant Sciencesthe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations