Plant Molecular Biology

, Volume 82, Issue 1–2, pp 155–168 | Cite as

In-depth proteome analysis of the rubber particle of Hevea brasiliensis (para rubber tree)



The rubber particle is a special organelle in which natural rubber is synthesised and stored in the laticifers of Hevea brasiliensis. To better understand the biological functions of rubber particles and to identify the candidate rubber biosynthesis-related proteins, a comprehensive proteome analysis was performed on H. brasiliensis rubber particles using shotgun tandem mass spectrometry profiling approaches—resulting in a thorough report on the rubber particle proteins. A total of 186 rubber particle proteins were identified, with a range in relative molecular mass of 3.9–194.2 kDa and in isoelectric point values of 4.0–11.2. The rubber particle proteins were analysed for gene ontology and could be categorised into eight major groups according to their functions: including rubber biosynthesis, stress- or defence-related responses, protein processing and folding, signal transduction and cellular transport. In addition to well-known rubber biosynthesis-related proteins such as rubber elongation factor (REF), small rubber particle protein (SRPP) and cis-prenyl transferase (CPT), many proteins were firstly identified to be on the rubber particles, including cyclophilin, phospholipase D, cytochrome P450, small GTP-binding protein, clathrin, eukaryotic translation initiation factor, annexin, ABC transporter, translationally controlled tumour protein, ubiquitin-conjugating enzymes, and several homologues of REF, SRPP and CPT. A procedure of multiple reaction monitoring was established for further protein validation. This comprehensive proteome data of rubber particles would facilitate investigation into molecular mechanisms of biogenesis, self-homeostasis and rubber biosynthesis of the rubber particle, and might serve as valuable biomarkers in molecular breeding studies of H. brasiliensis and other alternative rubber-producing species.


Hevea brasiliensis Rubber particle Proteome 1-DE gel electrophoresis MudPIT Multiple reaction monitoring Mass spectrometry 



Rubber elongation factor


Small rubber particle protein


cis-Prenyl transferase


Isopentenyl diphosphate


Two-dimensional electrophoresis


Sodium dodecyl sulphate polyacrylamide gel electrophoresis


Mass spectrometry


Tandem mass spectrometry


Strong cation exchange chromatography


Multidimensional protein identification technology


1D gel and liquid chromatography mass spectrometry


Multiple reaction monitoring


Liquid chromatography-MRM mass spectrometry


Gene ontology


Relative molecular mass

Supplementary material

11103_2013_47_MOESM1_ESM.doc (78 kb)
Supplementary material 1 (DOC 77 kb)
11103_2013_47_MOESM2_ESM.xls (293 kb)
Supplementary material 2 (XLS 293 kb)
11103_2013_47_MOESM3_ESM.xls (286 kb)
Supplementary material 3 (XLS 286 kb)
11103_2013_47_MOESM4_ESM.fa (13.6 mb)
Supplementary material 4 (FA 13937 kb)


  1. Addona TA, Abbatiello SE, Schilling B, Skates SJ, Mani DR, Bunk DM, Spiegelman CH, Zimmerman LJ, Ham AJ, Keshishian H, Hall SC et al (2009) Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat Biotechnol 27:633–641PubMedCrossRefGoogle Scholar
  2. Anderson L, Hunter C (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 5:573–588PubMedGoogle Scholar
  3. Asawatreratanakul K, Zhang YW, Wititsuwannakul D, Wititsuwannakul R, Takahashi S, Rattanapittayaporn A, Koyama T (2003) Molecular cloning, expression and characterization of cDNA encoding cis-prenyltransferase from Hevea brasiliensis. Eur J Biochem 270:4671–4680PubMedCrossRefGoogle Scholar
  4. Baskin TI (2000) The cytoskeleton. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiology, Rockville, MD, pp 202–258Google Scholar
  5. Baumeister W, Walz J, Zuhl F, Seemuller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92:367–380PubMedCrossRefGoogle Scholar
  6. Berkowitz D, Jost R, Pollmann S, Masle J (2008) Characterization of TCTP, the translationally controlled tumor protein, from Arabidopsis thaliana. Plant Cell 20:3430–3447PubMedCrossRefGoogle Scholar
  7. Boevink P, Oparka K, Santa-Cruz S, Martin B, Betteridge A, Hawes C (1998) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J 15:441–447PubMedCrossRefGoogle Scholar
  8. Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16:3285–3303PubMedCrossRefGoogle Scholar
  9. Chen P, Li XW, Sun YL, Liu Z, Cao R, He QY, Wang MC, Xiong JX, Xie JY, Wang XC, Liang SP (2006) Proteomic analysis of rat hippocampal plasma membrane: characterization of potential neuronal-specific plasma membrane proteins. J Neurochem 98:1126–1140PubMedCrossRefGoogle Scholar
  10. Cho WK, Chen XY, Uddin NM, Rim Y, Moon J, Jung JH, Shi C, Chu H, Kim S, Kim SW, Park ZY, Kim JY (2009) Comprehensive proteome analysis of lettuce latex using multidimensional protein-identification technology. Phytochemistry 70:570–578PubMedCrossRefGoogle Scholar
  11. Chow KS, Wan KL, Isa MN, Bahari A, Tan SH, Harikrishna K, Yeang HY (2007) Insights into rubber biosynthesis from transcriptome analysis of Hevea brasiliensis latex. J Exp Bot 58:2429–2440PubMedCrossRefGoogle Scholar
  12. Chow KS, Mat-Isa MN, Bahari A, Ghazali AK, Alias H, Mohd-Zainudding Z, Hoh CC, Wan KL (2011) Metabolic routes affecting rubber biosynthesis in Hevea brasiliensis latex. J Exp Bot 63:1863–1871PubMedCrossRefGoogle Scholar
  13. Chrispeels MJ, Herman ET (2000) Endoplasmic reticulum-derived compartments function in storage and as mediators of vacuolar remodeling via a new type of organelle, precursor protease vesicles. Plant Physiol 123:1227–1234PubMedCrossRefGoogle Scholar
  14. Cornish K (2001) Similarities and differences in rubber biochemistry among plant species. Phytochemistry 57:1123–1134PubMedCrossRefGoogle Scholar
  15. Cornish K, Backhaus RA (1990) Rubber transferase activity in rubber particles of guayule. Phytochemistry 29:3809–3813CrossRefGoogle Scholar
  16. Cornish K, Siler DJ (1996) Characterization of cis-prenyl transferase activity localized in a buoyant fraction of rubber particles from Ficus elastica latex. Plant Physiol Biochem 34:377–384Google Scholar
  17. Cornish K, Wood DF, Windle JJ (1999) Rubber particles from four different species, examined by transmission electron microscopy and electron-paramagnetic-resonance spin labeling, are found to consist of a homogenous rubber core enclosed by a contiguous monolayer biomembrane. Planta 210:85–96PubMedCrossRefGoogle Scholar
  18. Cox J, Mann M (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem 80:273–299PubMedCrossRefGoogle Scholar
  19. Das S, Bosley AD, Ye X, Chan KC, Chu I, Green JE, Issaq HJ, Veenstra TD, Andresson T (2010) Comparison of strong cation exchange and SDS-PAGE fractionation for analysis of multiprotein complexes. J Proteome Res 9:6696–6704PubMedCrossRefGoogle Scholar
  20. Dennis MS, Light DR (1989) Rubber elongation factor from Hevea brasiliensis. J Biol Chem 264:18608–18617PubMedGoogle Scholar
  21. Duan CF, Nie ZY, Li Y, Zeng RZ (2006) Establishment of 2-DE system and primary analyses on the membrane proteins of rubber particles in Hevea brasiliensis by MALDI-TOF. Chin J Trop Crops 27(3):22–29Google Scholar
  22. Duan CF, Rio M, Leclercq J, Bonnot F, Oliver G, Montoro P (2010) Gene expression pattern in response to wounding, methyl jasmonate and ethylene in the bark of Hevea brasiliesis. Tree Physiol 30:1349–1359PubMedCrossRefGoogle Scholar
  23. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207–214PubMedCrossRefGoogle Scholar
  24. Goyvaerts E, Dennis M, Light D, Chua NH (1991) Cloning and sequencing of the cDNA encoding the rubber elongation factor of Hevea brasiliensis. Plant Physiol 97:317–321PubMedCrossRefGoogle Scholar
  25. Henry IM, Carpentier SC, Pampurova S, van Hoylandt A, Panis B, Swennen R, Remy S (2011) Structure and regulation of the Asr gene family in banana. Planta 234:785–798PubMedCrossRefGoogle Scholar
  26. Higaki T, Kutsuna N, Okubo E, Sano T, Hasezawa S (2006) Actin micofilaments regulate vacuolar structures and dynamics: dual observation of actin microfilaments and vacuolar membrane in living tobacco BY-2 cells. Plant Cell Physiol 47:839–852PubMedCrossRefGoogle Scholar
  27. Hillebrand A, Post JJ, Wurbs D, Wahler D, Lenders M, Krzyzanek V, Prufer D, Gronover CS (2012) Down-regulation of small rubber particle protein expression affects integrity of rubber particles and rubber content in Taraxacum brevicorniculatum. PLoS ONE 7:e41874. doi:10.1371/journal.pone.0041874 PubMedCrossRefGoogle Scholar
  28. Isokpehi RD, Simmons SS, Cohly HH, Ekunwe SI, Begonia GB, Ayensu WK (2011) Identification of drought-responsive universal stress proteins in viridiplantae. Bioinform Biol Insights 5:41–58PubMedCrossRefGoogle Scholar
  29. Kalluri UC, Hurst GB, Lankford PK, Ranjan P, Pelletier DA (2009) Shotgun proteome profile of Populus developing xylem. Proteomics 9:4871–4880PubMedCrossRefGoogle Scholar
  30. Kang H, Kang MY, Han KH (2000) Identification of natural rubber and characterization of rubber biosynthetic activity in fig tree. Plant Physiol 123:1133–1142PubMedCrossRefGoogle Scholar
  31. Kim GT, Tsukaya H (2002) Regulation of the biosynthesis of plant hormones by cytochrome P450s. J Plant Res 115:169–177PubMedCrossRefGoogle Scholar
  32. Kim JS, Kim YK, Ryu HJ, Kwak YS, Lee JY, Kang HS (2003) Isolation of stress-related genes of rubber particles and latex in fig tree (Ficus carica) and their expressions by abiotic stress or plant hormone treatments. Plant Cell Physiol 44:412–419PubMedCrossRefGoogle Scholar
  33. Kim YM, Han YJ, Hwang OJ, Lee SS, Shin AY, Kim SY, Kim JI (2012) Overexpression of Arabidopsis translationally controlled tumor protein gene AtTCTP enhances drought tolerance with rapid ABA-induced stomatal closure. Mol Cells 33:617–626PubMedCrossRefGoogle Scholar
  34. Ko JH, Chow KS, Han KH (2003) Transcriptome analysis reveals novel features of the molecular events occurring in the laticifers of Hevea brasiliensis (para rubber tree). Plant Mol Biol 53:479–492PubMedCrossRefGoogle Scholar
  35. Konrad Z, Bar-Zvi D (2008) Synergism between the chaperone-like activity of the stress regulated ASR1 protein and the osmolyte glycine-betaine. Planta 227:1213–1219PubMedCrossRefGoogle Scholar
  36. Kumar A, Agarwal S, Heyman JA, Matson S, Heidtman M, Piccirillo S, Umansky L, Drawid A, Jansen R, Liu Y, Cheung KH et al (2002) Subcellular localization of the yeast proteome. Genes Dev 16:707–719PubMedCrossRefGoogle Scholar
  37. Kush A (1994) Isoprenoid biosynthesis: the Hevea factory. Plant Physiol Biochem 32:761–767Google Scholar
  38. Lange V, Picotti P, Domon B, Aebersold R (2008) Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 4:222. doi:10.1038/msb.2008.61 PubMedCrossRefGoogle Scholar
  39. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomics with massively parallel short read sequencing. Genome Res 20:265–272PubMedCrossRefGoogle Scholar
  40. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26:966–968PubMedCrossRefGoogle Scholar
  41. Marat AL, McPherson PS (2010) The connecdenn family, Rab35 guanine nucleotide exchange factors interfacing with the clathrin machinery. J Biol Chem 285:10627–10637PubMedCrossRefGoogle Scholar
  42. Miserey-Lenkei S, Chalancon G, Bardinm S, Formstecher E, Goud B, Echard A (2010) Rab and actomyosin-dependent fission of transport vesicles at the Golgi complex. Nat Cell Biol 12:645–654PubMedCrossRefGoogle Scholar
  43. Mizutani M, Ohta D (2010) Diversification of P450 genes during land plant evolution. Annu Rev Plant Biol 61:291–315PubMedCrossRefGoogle Scholar
  44. Mizutani M, Sato F (2011) Unusual P450 reactions in plant secondary metabolism. Arch Biochem Biophys 507:194–203PubMedCrossRefGoogle Scholar
  45. Negrutskii BS, El’skaya AV (1998) Eukaryotic translation elongation factor 1 alpha: structure, expression, functions, and possible role in aminoacyl-tRNA channeling. Prog Nucleic Acid Res Mol Biol 60:47–78PubMedCrossRefGoogle Scholar
  46. Oh SK, Kang H, Shin DH, Yang J, Chow KS, Yeang HY, Wagner B, Breitender H, Han KH (1999) Isolation, characterization, and functional analysis of a novel cDNA clone encoding a small rubber particle protein from Hevea brasiliensis. J Biol Chem 274:17132–17138PubMedCrossRefGoogle Scholar
  47. Pan Z, Durst F, Werck-Reichhart D, Gardner HW, Camara B, Cornish K, Backhaus RA (1995) The major protein of guayule rubber particles is a cytochrome P450. Characterization based on cDNA cloning and spectroscopic analysis of the solubilized enzyme and its reaction products. J Biol Chem 270:8487–8494PubMedCrossRefGoogle Scholar
  48. Pfeffer SR (2001) Rab GTPases: specifying and deciphering organelle identity and function. Trends Cell Biol 11:487–491PubMedCrossRefGoogle Scholar
  49. Post J, van Deenen N, Fricke J, Kowalski N, Wurbs D, Schaller H, Eisenreich W, Huber C, Twyman RM, Prüfer D, Gronover CS (2012) Laticifer-specific cis-prenyltransferase silencing affects the rubber, triterpene, and inulin content of Taraxacum brevicorniculatum. Plant Physiol 158:1406–1417PubMedCrossRefGoogle Scholar
  50. Pucadyil TJ, Schmid SL (2009) Conserved function of membrane active GTPases in coated vesicle formation. Science 325:1217–1220PubMedCrossRefGoogle Scholar
  51. Qin YX, Shi F, Tang CR (2011) Molecular characterization and expression analysis of cDNAs encoding four Rab and two Arf GTPases in the latex of Hevea brasiliensis. Plant Physiol Biochem 49:729–737PubMedCrossRefGoogle Scholar
  52. Richter S, Voss U, Jurgens G (2009) Post-Golgi traffic in plants. Traffic 10:819–828PubMedCrossRefGoogle Scholar
  53. Schmidt T, Lenders M, Hillebrand A, van Deenen N, Munt O, Reichelt R, Eisenreich W, Fisher R, Prufer D, Gronover CS (2010) Characterization of rubber particles and rubber chain elongation in Taraxacum koksaghyz. BMC Biochem 11:11. doi:10.1186/1471-2091-11-11 PubMedCrossRefGoogle Scholar
  54. Scott DJ, da Costa BM, Espy SC, Keasling JD, Cornish K (2003) Activation and inhibition of rubber transferases by metal cofactors and pyrophosphate substrates. Phytochemistry 64:123–134PubMedCrossRefGoogle Scholar
  55. Siler DJ, Goodrich-Tanrikulu M, Cornish K, Stafford AE, Mckeon TA (1997) Composition of rubber particles of Hevea brasiliensis, Parthenium argentatum, Ficus elastica and Euphorbia lactiflua indicates unconventional surface structure. Plant Physiol Biochem 35:881–889Google Scholar
  56. Singh AP, Wi SG, Chung GC, Kim YS, Kang H (2003) The micromorphology and protein characterization of rubber particles in Ficus carica, Ficus benghalensis and Hevea brasiliensis. J Exp Bot 54:985–992PubMedCrossRefGoogle Scholar
  57. Sirpio S, Khrouchtchova A, Allahverdiyeva Y, Hansson M, Fristedt R, Veber AV, Scheller HV, Jensen PE, Haldrup A, Aro EM (2008) AtCYP38 ensures early biogenesis, correct assembly and sustenance of photosystem II. Plant J 55:639–651PubMedCrossRefGoogle Scholar
  58. Song JP, Sun RJ, Li DZ, Tan FJ, Li X, Jiang PP, Huang XJ, Lin L, Deng ZN, Zhang Y (2012) An improvement of shotgun proteomics analysis by adding next-generation sequencing transcriptome data in orange. PLoS ONE 7:e39494. doi:10.1371/journal.pone.0039494 PubMedCrossRefGoogle Scholar
  59. van Beilen JB, Poirier Y (2007) Establishment of new crops for the production of natural rubber. Trends Biotech 25:522–529CrossRefGoogle Scholar
  60. Wahler D, Colby T, Kowalski NA, Harzen A, Wotzka SY, Hillbrand A, Fisher R, Helsper J, Schmidt J, Gronover CS, Prufer D (2012) Proteomic analysis of latex from the rubber-producing plant Taraxacum brevicorniculatum. Proteomics 12:901–905PubMedCrossRefGoogle Scholar
  61. Wang XH, Shi MJ, Lu XL, Ma RF, Wu CG, Guo AP, Peng M, Tian WM (2010) A method for protein extraction from different subcellular fractions of laticifer latex in Hevea brasiliensis compatible with 2DE and MS. Proteome Sci 8:35–44PubMedCrossRefGoogle Scholar
  62. Wu CC, MacCoss MJ (2002) Shotgun proteomics: tools for the analysis of complex biological systems. Curr Opin Mol Therapeutics 4:242–250Google Scholar
  63. Xiang QL, Xia KC, Dai LJ, Kang GJ, Li Y, Nie ZY, Duan CF, Zeng RZ (2012) Proteome analysis of the large and the small rubber particles of Hevea brasiliensis using 2D-DIGE. Plant Physiol Biochem 60:207–213PubMedCrossRefGoogle Scholar
  64. Xu J, Zhang B, Jiang C, Ming F (2011) RceIF5A, encoding an eukaryotic translation initiation factor 5A in Rosa chinensis, can enhance thermotolerance, oxidative and osmotic stress resistance of Arabidopsis thaliana. Plant Mol Biol 75:167–178PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Key Laboratory of Biology and Genetic Resources of Rubber TreeMinistry of AgricultureDanzhouPeople’s Republic of China
  2. 2.State Key Laboratory Incubation Base, Rubber Research InstituteChinese Academy of Tropical Agricultural Sciences (CATAS)DanzhouPeople’s Republic of China

Personalised recommendations