Plant Molecular Biology

, Volume 81, Issue 6, pp 565–576 | Cite as

The Arabidopsis thaliana ortholog of a purported maize cholinesterase gene encodes a GDSL-lipase

  • Mrinalini Muralidharan
  • Kristina Buss
  • Katherine E. Larrimore
  • Nicholas A. Segerson
  • Latha Kannan
  • Tsafrir S. Mor
Article

Abstract

Acetylcholinesterase is an enzyme that is intimately associated with regulation of synaptic transmission in the cholinergic nervous system and in neuromuscular junctions of animals. However the presence of cholinesterase activity has been described also in non-metazoan organisms such as slime molds, fungi and plants. More recently, a gene purportedly encoding for acetylcholinesterase was cloned from maize. We have cloned the Arabidopsis thaliana homolog of the Zea mays gene, At3g26430, and studied its biochemical properties. Our results indicate that the protein encoded by the gene exhibited lipase activity with preference to long chain substrates but did not hydrolyze choline esters. The At3g26430 protein belongs to the SGNH clan of serine hydrolases, and more specifically to the GDS(L) lipase family.

Keywords

Cholinesterase GDS(L)lipase Serine hydrolase 

Supplementary material

11103_2013_21_MOESM1_ESM.xls (288 kb)
Supplementary material 1 (XLS 288 kb)

References

  1. Akoh CC, Lee GC, Liaw YC, Huang TH, Shaw JF (2004) GDSL family of serine esterases/lipases. Prog Lipid Res 43(6):534–552. doi:10.1016/j.plipres.2004.09.002 PubMedCrossRefGoogle Scholar
  2. Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55(4):539–552. doi:10.1080/10635150600755453 PubMedCrossRefGoogle Scholar
  3. Bamel K, Gupta SC, Gupta R (2007) Acetylcholine causes rooting in leaf explants of in vitro raised tomato (Lycopersicon esculentum Miller) seedlings. Life Sci 80(24–25):2393–2396. doi:10.1016/j.lfs.2007.01.039 PubMedCrossRefGoogle Scholar
  4. Baudouin E, Charpenteau M, Roby D, Marco Y, Ranjeva R, Ranty B (1997) Functional expression of a tobacco gene related to the serine hydrolase family—esterase activity towards short-chain dinitrophenyl acylesters. Eur J Biochem 248(3):700–706PubMedCrossRefGoogle Scholar
  5. Becker D, Kemper E, Schell J, Masterson R (1992) New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol Biol 20(6):1195–1197PubMedCrossRefGoogle Scholar
  6. Beri V, Gupta R (2007) Acetylcholinesterase inhibitors neostigmine and physostigmine inhibit induction of alpha-amylase activity during seed germination in barley, Hordeum vulgare var. Jyoti. Life Sci 80(24–25):2386–2388. doi:10.1016/j.lfs.2007.02.018 PubMedCrossRefGoogle Scholar
  7. Chevenet F, Brun C, Banuls AL, Jacq B, Christen R (2006) TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 7:439. doi:10.1186/1471-2105-7-439 PubMedCrossRefGoogle Scholar
  8. Clauss K, Baumert A, Nimtz M, Milkowski C, Strack D (2008) Role of a GDSL lipase-like protein as sinapine esterase in Brassicaceae. Plant J 53(5):802–813. doi:10.1111/j.1365-313X.2007.03374.x PubMedCrossRefGoogle Scholar
  9. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743PubMedCrossRefGoogle Scholar
  10. Delmonte Corrado MU, Politi H, Ognibene M, Angelini C, Trielli F, Ballarini P, Falugi C (2001) Synthesis of the signal molecule acetylcholine during the developmental cycle of Paramecium primaurelia (Protista, Ciliophora) and its possible function in conjugation. J Exp Biol 204(Pt 11):1901–1907PubMedGoogle Scholar
  11. Denker E, Chatonnet A, Rabet N (2008) Acetylcholinesterase activity in Clytia hemisphaerica (Cnidaria)q. Chem Biol Interact 175(1–3):125–128. doi:10.1016/j.cbi.2008.03.004 PubMedCrossRefGoogle Scholar
  12. Dent JA (2006) Evidence for a diverse cys-loop ligand-gated ion channel superfamily in early bilateria. J Mol Evol 62(5):523–535. doi:10.1007/s00239-005-0018-2 PubMedCrossRefGoogle Scholar
  13. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(Web Server issue):W465–W469. doi:10.1093/nar/gkn180
  14. Desper R, Gascuel O (2004) Theoretical foundation of the balanced minimum evolution method of phylogenetic inference and its relationship to weighted least-squares tree fitting. Mol Biol Evol 21(3):587–598. doi:10.1093/molbev/msh049/msh049 PubMedCrossRefGoogle Scholar
  15. Domenech CE, Garrido MN, Lisa TA (1991) Pseudomonas aeruginosa cholinesterase and phosphorylcholine phosphatase: two enzymes contributing to corneal infection. FEMS Microbiol Lett 82(2):131–135CrossRefGoogle Scholar
  16. Earle JP, Barclay SL (1986) A cell surface-localized acetylcholinesterase in the cellular slime mold Polysphondylium Violaceum. FEMS Microbiol Lett 35(1):83–88CrossRefGoogle Scholar
  17. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. doi:10.1093/nar/gkh340 PubMedCrossRefGoogle Scholar
  18. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protocols 2(4):953–971CrossRefGoogle Scholar
  19. Goloboff P, Farris S, KN (2000) TNT (Tree analysis using New Technology). ver. 1.1, edn. Published by the authors, TucumánGoogle Scholar
  20. Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5(2):164–166Google Scholar
  21. Fletcher SP, Geyer BC, Smith A, Evron T, Joshi L, Soreq H, Mor TS (2004) Tissue distribution of cholinesterases and anticholinesterases in native and transgenic tomato plants. Plant Mol Biol 55(1):33–43PubMedCrossRefGoogle Scholar
  22. Fluck RA, Jaffe MJ (1974) The distribution of cholin esterases in plant species. Phytochemistry 13(11):2475–2480CrossRefGoogle Scholar
  23. Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14(7):685–695PubMedCrossRefGoogle Scholar
  24. Geyer BC, Kannan L, Cherni I, Woods RR, Soreq H, Mor TS (2010) Transgenic plants as a source for the bioscavenging enzyme, human butyrylcholinesterase. Plant Biotechnol J 8(8):873–886. doi:10.1111/j.1467-7652.2010.00515.x PubMedCrossRefGoogle Scholar
  25. Gupta A, Gupta R (1997) A survey of plants for reference of cholinesterase activity. Phytochemistry 46(5):827–831CrossRefGoogle Scholar
  26. Gupta A, Vijayaraghavan MR, Gupta R (1998) The presence of cholinesterase in marine algae. Phytochemistry 49(7):1875–1877CrossRefGoogle Scholar
  27. Hartmann E, Gupta R (1989) Acetylcholine as a signaling system in plants. In: Boss WF, Morre DJ (eds) Second messengers in plant growth and development plant biology, vol 6. Alan R. Liss Inc., New York, pp 257–288Google Scholar
  28. Hong JK, Choi HW, Hwang IS, Kim DS, Kim NH, du Choi S, Kim YJ, Hwang BK (2008) Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. Planta 227(3):539–558. doi:10.1007/s00425-007-0637-5 PubMedCrossRefGoogle Scholar
  29. Horiuchi Y, Kimura R, Kato N, Fujii T, Seki M, Endo T, Kato T, Kawashima K (2003) Evolutional study on acetylcholine expression. Life Sci 72(15):1745–1756PubMedCrossRefGoogle Scholar
  30. Jaffe MJ (1970) Evidence for the regulation of phytochrome-mediated process in bean roots by the neurohumor, acetylcholine. Plant Physiol 46(6):768–777PubMedCrossRefGoogle Scholar
  31. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8(3):275–282PubMedGoogle Scholar
  32. Katavic V, Agrawal GK, Hajduch M, Harris SL, Thelen JJ (2006) Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars. Proteomics 6(16):4586–4598. doi:10.1002/pmic.200600020 PubMedCrossRefGoogle Scholar
  33. Kawashima K, Misawa H, Moriwaki Y, Fujii YX, Fujii T, Horiuchi Y, Yamada T, Imanaka T, Kamekura M (2007) Ubiquitous expression of acetylcholine and its biological functions in life forms without nervous systems. Life Sci 80(24–25):2206–2209. doi:10.1016/j.lfs.2007.01.059 PubMedCrossRefGoogle Scholar
  34. Kim KJ, Lim JH, Kim MJ, Kim T, Chung HM, Paek KH (2008) GDSL-lipase1 (CaGL1) contributes to wound stress resistance by modulation of CaPR-4 expression in hot pepper. Biochem Biophys Res Commun 374(4):693–698PubMedCrossRefGoogle Scholar
  35. Kondou Y, Nakazawa M, Kawashima M, Ichikawa T, Yoshizumi T, Suzuki K, Ishikawa A, Koshi T, Matsui R, Muto S, Matsui M (2008) RETARDED GROWTH OF EMBRYO1, a new basic helix-loop-helix protein, expresses in endosperm to control embryo growth. Plant Physiol 147(4):1924–1935. doi:10.1104/pp.108.118364 PubMedCrossRefGoogle Scholar
  36. Kram BW, Bainbridge EA, Perera MA, Carter C (2008) Identification, cloning and characterization of a GDSL lipase secreted into the nectar of Jacaranda mimosifolia. Plant Mol Biol 68(1–2):173–183. doi:10.1007/s11103-008-9361-1 PubMedCrossRefGoogle Scholar
  37. Kwon SJ, Jin HC, Lee S, Nam MH, Chung JH, Kwon SI, Ryu CM, Park OK (2009) GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis. Plant J 58(2):235–245. doi:10.1111/j.1365-313X.2008.03772.x PubMedCrossRefGoogle Scholar
  38. Le Novere N, Changeux JP (1995) Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J Mol Evol 40(2):155–172PubMedCrossRefGoogle Scholar
  39. Lo YC, Lin SC, Shaw JF, Liaw YC (2003) Crystal structure of Escherichia coli thioesterase I/protease I/lysophospholipase L1: consensus sequence blocks constitute the catalytic center of SGNH-hydrolases through a conserved hydrogen bond network. J Mol Biol 330(3):539–551PubMedCrossRefGoogle Scholar
  40. Madhavan S, Sarath G, Lee BH, Pegden RS (1995) Guard cell protoplasts contain acetylcholinesterase activity. Plant Sci 109(2):119–127CrossRefGoogle Scholar
  41. Momonoki YS (1997) Asymmetric distribution of acetylcholinesterase in gravistimulated maize seedlings. Plant Physiol 114(1):47–53PubMedGoogle Scholar
  42. Momonoki YS, Bandurski RS (1994) Asymmetric distribution of acetylcholinesterase activity and safranin distribution after a gravity stimulation in maize. Plant Physiol Rockville 105(1 Suppl):22Google Scholar
  43. Momonoki YS, Kawai N, Takamure I, Kowalczyk S (2000) Gravitropic response of acetylcholinesterase and IAA-inositol synthase in lazy rice. Plant Prod Sci 3(1):17–23CrossRefGoogle Scholar
  44. Mor TS, Soreq H (2004) Human cholinesterases from plants for detoxification. In: Goodman RM (ed) Encyclopedia of plant and crop science. Marcel Dekker, Inc., New York, pp 564–567Google Scholar
  45. Mor TS, Sternfeld M, Soreq H, Arntzen CJ, Mason HS (2001) Expression of recombinant human acetylcholinesterase in transgenic tomato plants. Biotechnol Bioeng 75(3):259–266PubMedCrossRefGoogle Scholar
  46. Muralidharan M, Soreq H, Mor TS (2005) Characterizing pea acetylcholinesterase. Chemico-Biol Interact 157–158:406–407CrossRefGoogle Scholar
  47. Naranjo MA, Forment J, Roldan M, Serrano R, Vicente O (2006) Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants. Plant, Cell Environ 29(10):1890–1900. doi:10.1111/j.1365-3040.2006.01565.x CrossRefGoogle Scholar
  48. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302(1):205–217. doi:10.1006/jmbi.2000.4042 PubMedCrossRefGoogle Scholar
  49. Oh IS, Park AR, Bae MS, Kwon SJ, Kim YS, Lee JE, Kang NY, Lee S, Cheong H, Park OK (2005) Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17(10):2832–2847. doi:10.1105/tpc.105.034819 PubMedCrossRefGoogle Scholar
  50. Papadopoulos JS, Agarwala R (2007) COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23(9):1073–1079. doi:10.1093/bioinformatics/btm076 PubMedCrossRefGoogle Scholar
  51. Raineri M, Modenesi P (1986) Preliminary evidence for a cholinergic-like system in lichen morphogenesis. Histochem J 18(11–12):647–657PubMedCrossRefGoogle Scholar
  52. Riov J, Jaffe MJ (1973) A Cholinesterase from bean roots and its inhibition by plant growth retardants. Experientia 29(3):264–265CrossRefGoogle Scholar
  53. Roshchina VV (2001) Nerotransmitters in plant life. Science Publishers Inc., EnfieldGoogle Scholar
  54. Sagane Y, Nakagawa T, Yamamoto K, Michikawa S, Oguri S, Momonoki YS (2005) Molecular characterization of maize acetylcholinesterase. A novel enzyme family in the plant kingdom. Plant Physiol 138(3):1359–1371PubMedCrossRefGoogle Scholar
  55. Sahdev S, Khattar SK, Saini KS (2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 307(1–2):249–264. doi:10.1007/s11010-007-9603-6 PubMedGoogle Scholar
  56. Takahashi K, Shimada T, Kondo M, Tamai A, Mori M, Nishimura M, Hara-Nishimura I (2010) Ectopic expression of an esterase, which is a candidate for the unidentified plant cutinase, causes cuticular defects in Arabidopsis thaliana. Plant Cell Physiol 51(1):123–131. doi:10.1093/pcp/pcp173 PubMedCrossRefGoogle Scholar
  57. Tezuka T, Akita I, Yoshino N, Suzuki Y (2007) Regulation of self-incompatibility by acetylcholine and cAMP in Lilium longiflorum. J Plant Physiol 164(7):878–885. doi:10.1016/j.jplph.2006.05.013 PubMedCrossRefGoogle Scholar
  58. Tretyn A, Kendrick RE (1991) Acetylcholine in plants: presence, metabolism and mechanism of action. Bot Rev 57(1):33–73CrossRefGoogle Scholar
  59. Upton C, Buckley JT (1995) A new family of lipolytic enzymes? Trends Biochem Sci 20(5):178–179PubMedCrossRefGoogle Scholar
  60. Walker RJ, Brooks HL, Holden-Dye L (1996) Evolution and overview of classical transmitter molecules and their receptors. Parasitology 113 Suppl (S3–S33):1996/1901/1901Google Scholar
  61. Wessler I, Kirkpatrick CJ (2008) Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol 154(8):1558–1571. doi:10.1038/bjp.2008.185 PubMedCrossRefGoogle Scholar
  62. Wessler I, Kirkpatrick CJ, Racke K (1999) The cholinergic ‘pitfall’: acetylcholine, a universal cell molecule in biological systems, including humans. Clin Exp Pharmacol Physiol 26(3):198–205PubMedCrossRefGoogle Scholar
  63. Woo YM, Park HJ, Su’udi M, Yang JI, Park JJ, Back K, Park YM, An G (2007) Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol 65(1–2):125–136. doi:10.1007/s11103-007-9203-6 PubMedCrossRefGoogle Scholar
  64. Yamada T, Fujii T, Kanai T, Amo T, Imanaka T, Nishimasu H, Wakagi T, Shoun H, Kamekura M, Kamagata Y, Kato T, Kawashima K (2005) Expression of acetylcholine (ACh) and ACh-synthesizing activity in Archaea. Life Sci 77(16):1935–1944. doi:10.1016/j.lfs.2005.01.026 PubMedCrossRefGoogle Scholar
  65. Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY (2004) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16(2):500–509. doi:10.1105/tpc.018044 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Mrinalini Muralidharan
    • 1
  • Kristina Buss
    • 1
  • Katherine E. Larrimore
    • 1
  • Nicholas A. Segerson
    • 1
  • Latha Kannan
    • 1
  • Tsafrir S. Mor
    • 1
  1. 1.School of Life Sciences and The Biodesign InstituteArizona State UniversityTempeUSA

Personalised recommendations