Plant Molecular Biology

, Volume 81, Issue 4–5, pp 431–446 | Cite as

Structural, kinetic and computational investigation of Vitis vinifera DHDPS reveals new insight into the mechanism of lysine-mediated allosteric inhibition

  • Sarah C. Atkinson
  • Con Dogovski
  • Matthew T. Downton
  • Peter E. Czabotar
  • Renwick C. J. Dobson
  • Juliet A. Gerrard
  • John Wagner
  • Matthew A. PeruginiEmail author


Lysine is one of the most limiting amino acids in plants and its biosynthesis is carefully regulated through inhibition of the first committed step in the pathway catalyzed by dihydrodipicolinate synthase (DHDPS). This is mediated via a feedback mechanism involving the binding of lysine to the allosteric cleft of DHDPS. However, the precise allosteric mechanism is yet to be defined. We present a thorough enzyme kinetic and thermodynamic analysis of lysine inhibition of DHDPS from the common grapevine, Vitis vinifera (Vv). Our studies demonstrate that lysine binding is both tight (relative to bacterial DHDPS orthologs) and cooperative. The crystal structure of the enzyme bound to lysine (2.4 Å) identifies the allosteric binding site and clearly shows a conformational change of several residues within the allosteric and active sites. Molecular dynamics simulations comparing the lysine-bound (PDB ID 4HNN) and lysine free (PDB ID 3TUU) structures show that Tyr132, a key catalytic site residue, undergoes significant rotational motion upon lysine binding. This suggests proton relay through the catalytic triad is attenuated in the presence of lysine. Our study reveals for the first time the structural mechanism for allosteric inhibition of DHDPS from the common grapevine.


Allostery Analytical ultracentrifugation Circular dichroism spectroscopy Dihydrodipicolinate synthase Enzyme Grapevine Lysine biosynthesis Molecular dynamics simulations X-ray crystallography 

(S)-Aspartate semialdehyde


Dihydrodipicolinate reductase


Dihydrodipicolinate synthase








Vitis vinifera



We would firstly like to acknowledge the support and assistance of the friendly staff at the Bio21 Collaborative Crystallographic Centre at CSIRO Molecular and Health Technologies, Parkville, Melbourne and the beamline scientists at the Australian Synchrotron, Victoria, Australia. We would also like to thank all members of the Perugini laboratory for helpful discussions during the preparation of this manuscript. Finally, we acknowledge the Australian Research Council for providing a Future Fellowship for M.A.P. and P.C and the University of Melbourne (FRGSS 2011 Project grant) for project funding. R.C.J.D. acknowledges the CR Roper Bequest for Fellowship support. This research was supported by a Victorian Life Sciences Computation Initiative (VLSCI) grant number VR0089 on its Peak Computing Facility at the University of Melbourne, an initiative of the Victorian Government, Australia.

Supplementary material

11103_2013_14_MOESM1_ESM.docx (10 mb)
Supplementary material 1 (DOCX 10199 kb)


  1. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221PubMedCrossRefGoogle Scholar
  2. Atkinson SC, Dogovski C, Newman J, Dobson RC, Perugini MA (2011) Cloning, expression, purification and crystallization of dihydrodipicolinate synthase from the grapevine Vitis vinifera. Acta Crystallogr Sect F Struct Biol Cryst Commun 67:1537–1541PubMedCrossRefGoogle Scholar
  3. Atkinson SC, Dogovski C, Downton MT, Pearce FG, Reboul CF, Buckle AM, Gerrard JA, Dobson RCJ, Wagner J, Perugini MA (2012) Crystal, solution and in silico structural studies of dihydrodipicolinate synthase from the common grapevine. PLoS One 7:e38318PubMedCrossRefGoogle Scholar
  4. Ben-Tzvi Tzchori I, Perl A, Galili G (1996) Lysine and threonine metabolism are subject to complex patterns of regulation in Arabidopsis. Plant Mol Biol 32:727–734PubMedCrossRefGoogle Scholar
  5. Bittel D, Shaver J, Somers D, Gengenbach B (1996) Lysine accumulation in maize cell cultures transformed with a lysine-insensitive form of maize dihydrodipicolinate synthase.Theor App Genet 92:70–77Google Scholar
  6. Blagova E, Levdikov V, Milioti N, Fogg MJ, Kalliomaa AK, Brannigan JA, Wilson KS, Wilkinson AJ (2006) Crystal structure of dihydrodipicolinate synthase (BA3935) from Bacillus anthracis at 1.94 A resolution. Proteins 62:297–301PubMedCrossRefGoogle Scholar
  7. Blickling S, Beisel HG, Bozic D, Knablein J, Laber B, Huber R (1997a) Structure of dihydrodipicolinate synthase of Nicotiana sylvestris reveals novel quaternary structure. J Mol Biol 274:608–621PubMedCrossRefGoogle Scholar
  8. Blickling S, Renner C, Laber B, Pohlenz HD, Holak TA, Huber R (1997b) Reaction mechanism of Escherichia coli dihydrodipicolinate synthase investigated by X-ray crystallography and NMR spectroscopy. Biochemistry 36:24–33PubMedCrossRefGoogle Scholar
  9. Boughton BA, Griffin MDW, O’Donnell PA, Dobson RCJ, Perugini MA, Gerrard JA, Hutton CA (2008) Irreversible inhibition of dihydrodipicolinate synthase by 4-oxo-heptenedioic acid analogues. Bioorg Med Chem 16:9975–9983PubMedCrossRefGoogle Scholar
  10. Bradrick TD, Beechem JM, Howell EE (1996) Unusual binding stoichiometries and cooperativity are observed during binary and ternary complex formation in the single active pore of R67 dihydrofolate reductase, a D2 symmetric protein. Biochemistry 35:11414–11424PubMedCrossRefGoogle Scholar
  11. Brinch-Pedersen H, Galili G, Knudsen S, Holm PB (1996) Engineering of the aspartate family biosynthetic pathway in barley (Hordeum vulgare L.) by transformation with heterologous genes encoding feed-back-insensitive aspartate kinase and dihydrodipicolinate synthase. Plant Mol Biol 32:611–620PubMedCrossRefGoogle Scholar
  12. Burgess BR, Dobson RC, Bailey MF, Atkinson SC, Griffin MD, Jameson GB, Parker MW, Gerrard JA, Perugini MA (2008) Structure and evolution of a novel dimeric enzyme from a clinically important bacterial pathogen. J Biol Chem 283:27598–27603PubMedCrossRefGoogle Scholar
  13. Cahyanto MN, Kawasaki H, Nagashio M, Fujiyama K, Seki T (2006) Regulation of aspartokinase, aspartate semialdehyde dehydrogenase, dihydrodipicolinate synthase and dihydrodipicolinate reductase in Lactobacillus plantarum. Microbiology 152:105–112PubMedCrossRefGoogle Scholar
  14. Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crysta D66:12–21Google Scholar
  15. Collaborative Computational Project Number 4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crysta D50:760–763Google Scholar
  16. Cornish-Bowden A (1976) Principles of enzyme kinetics. Butterworths, LondonGoogle Scholar
  17. Cox RJ, Sutherland A, Vederas JC (2000) Bacterial diaminopimelate metabolism as a target for antibiotic design. Bioorg Med Chem 8:843–871PubMedCrossRefGoogle Scholar
  18. Cremer J, Treptow C, Eggeling L, Sahm H (1988) Regulation of enzymes of lysine biosynthesis in Corynebacterium glutamicum. J Gen Microbiol 134:3221–3229PubMedGoogle Scholar
  19. Davis AJ, Perugini MA, Smith BJ, Stewart JD, Ilg T, Hodder AN, Handman E (2004) Properties of GDP-mannose pyrophosphorylase, a critical enzyme and drug target in Leishmania mexicana. J Bioll Chem 279:12462–12468CrossRefGoogle Scholar
  20. Demeler B (2005a) Bioinformatics basics: applications in biological science and medicine. In: Rashidi H, Buehler L (eds) Hydrodynamic methods. CRC Press LLC, New York, pp 226–255Google Scholar
  21. Demeler B (2005b) Ultrascan: a comprehensive data analysis software package for analytical ultracentrifugation experiments. Royal Society of Chemistry, CambridgeGoogle Scholar
  22. Demeler B, van Holde KE (2004) Sedimentation velocity analysis of highly heterogeneous systems. Anal Biochem 335:279–288PubMedCrossRefGoogle Scholar
  23. Dereppe C, Bold G, Ghisalba O, Ebert E, Schar HP (1992) Purification and characterization of dihydrodipicolinate synthase from pea. Plant Physiol 98:813–821PubMedCrossRefGoogle Scholar
  24. Devenish SR, Gerrard JA, Jameson GB, Dobson RC (2008) The high-resolution structure of dihydrodipicolinate synthase from Escherichia coli bound to its first substrate, pyruvate. Acta Crystallogr Sect F Struct Biol Cryst Commun 64:1092–1095PubMedCrossRefGoogle Scholar
  25. Devenish SR, Huisman FH, Parker EJ, Hadfield AT, Gerrard JA (2009) Cloning and characterisation of dihydrodipicolinate synthase from the pathogen Neisseria meningitidis. Biochim Biophys Acta 1794:1168–1174PubMedCrossRefGoogle Scholar
  26. Dobson RC, Valegard K, Gerrard JA (2004) The crystal structure of three site-directed mutants of Escherichia coli dihydrodipicolinate synthase: further evidence for a catalytic triad. J Mol Biol 338:329–339PubMedCrossRefGoogle Scholar
  27. Dobson RC, Devenish SR, Turner LA, Clifford VR, Pearce FG, Jameson GB, Gerrard JA (2005a) Role of arginine 138 in the catalysis and regulation of Escherichia coli dihydrodipicolinate synthase. Biochemistry 44:13007–13013PubMedCrossRefGoogle Scholar
  28. Dobson RC, Griffin MD, Jameson GB, Gerrard JA (2005b) The crystal structures of native and (S)-lysine-bound dihydrodipicolinate synthase from Escherichia coli with improved resolution show new features of biological significance. Acta Crysta D61:1116–1124Google Scholar
  29. Dobson RC, Griffin MD, Devenish SR, Pearce FG, Hutton CA, Gerrard JA, Jameson GB, Perugini MA (2008) Conserved main-chain peptide distortions: a proposed role for Ile203 in catalysis by dihydrodipicolinate synthase. Protein Sci 17:2080–2090PubMedCrossRefGoogle Scholar
  30. Dogovski C, Atkinson SC, Dommaraju SR, Hor L, Hutton CA, Gerrard JA, Perugini MA (2009) Lysine biosynthesis in bacteria—an unchartered pathway for novel antibiotic design in biotechnology: fundamentals and modern development part I. In: Doelle H (ed) Encyclopedia of life support systems (EOLSS). Eolss Publishers, Oxford, pp 116–136Google Scholar
  31. Dogovski C, Atkinson SC, Dommaraju SR, Downton M, Hor L, Moore S, Paxman JJ, Pevereli MG, Qiu TW, Reumann M, Siddiqui T, Taylor NL, Wagner J, Wubben JM, Perugini MA (2012) Enzymology of bacterial lysine biosynthesis. In: Ekinci D (ed) Biochemistry. InTech Open Access Publisher, Rijeka, pp 225–262Google Scholar
  32. Domigan LJ, Scally SW, Fogg MJ, Hutton CA, Perugini MA, Dobson RC, Muscroft-Taylor AC, Gerrard JA, Devenish SR (2009) Characterisation of dihydrodipicolinate synthase (DHDPS) from Bacillus anthracis. Biochim Biophys Acta 1794:1510–1516PubMedCrossRefGoogle Scholar
  33. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystal D60:2126–2132Google Scholar
  34. Evans P (2006) Scaling and assessment of data quality. Acta Crysta D62:72–82Google Scholar
  35. Evans G, Pettifer RF (2001) CHOOCH: a program for deriving anomalous-scattering factors from X-ray fluorescence spectra. J Appl Crystallogr 34:82–86CrossRefGoogle Scholar
  36. Frankard V, Ghislain M, Jacobs M (1992) Two feedback-insensitive enzymes of the aspartate pathway in Nicotiana sylvestris. Plant Physiol 99:1285–1293PubMedCrossRefGoogle Scholar
  37. Frisch DA, Gengenbach BG, Tommey AM, Sellner JM, Somers DA, Myers DE (1991) Isolation and characterization of dihydrodipicolinate synthase from maize. Plant Physiol 96:444–452PubMedCrossRefGoogle Scholar
  38. Galili G (1995) Regulation of lysine and threonine synthesis. Plant Cell 7:899–906PubMedGoogle Scholar
  39. Ghislain M, Frankard V, Jacobs M (1990) Dihydrodipicolinate synthase of Nicotiana sylvestris, a chloroplast-localized enzyme of the lysine pathway. Planta 180:480–486CrossRefGoogle Scholar
  40. Ghislain M, Frankard V, Jacobs M (1995) A dinucleotide mutation in dihydrodipicolinate synthase of Nicotiana sylvestris leads to lysine overproduction. Plant J 8:733–743PubMedCrossRefGoogle Scholar
  41. Girish TS, Sharma E, Gopal B (2008) Structural and functional characterization of Staphylococcus aureus dihydrodipicolinate synthase. FEBS Lett 582:2923–2930PubMedCrossRefGoogle Scholar
  42. Griffin MD, Dobson RC, Pearce FG, Antonio L, Whitten AE, Liew CK, Mackay JP, Trewhella J, Jameson GB, Perugini MA, Gerrard JA (2008) Evolution of quaternary structure in a homotetrameric enzyme. J Mol Biol 380:691–703PubMedCrossRefGoogle Scholar
  43. Griffin MD, Dobson RC, Gerrard JA, Perugini MA (2010) Exploring the dihydrodipicolinate synthase tetramer: how resilient is the dimer–dimer interface? Arch Biochem Biophys 494:58–63PubMedCrossRefGoogle Scholar
  44. Griffin MDW, Billakanti JM, Wason A, Keller S, Mertens HDT, Atkinson SC, Dobson RCJ, Perugini MA, Gerrard JA, Pearce FG (2012) Characterisation of the first enzymes committed to lysine biosynthesis in Arabidopsis thaliana. PLoS One 7:e40318PubMedCrossRefGoogle Scholar
  45. Halling SM, Stahly DP (1976) Dihydrodipicolinic acid synthase of Bacillus licheniformis. Quaternary structure, kinetics, and stability in the presence of sodium chloride and substrates. Biochim Biophys Acta 452:580–596PubMedCrossRefGoogle Scholar
  46. Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40(Suppl):iv–viiGoogle Scholar
  47. Hoganson DA, Stahly DP (1975) Regulation of dihydrodipicolinate synthase during growth and sporulation of Bacillus cereus. J Bacteriol 124:1344–1350PubMedGoogle Scholar
  48. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38PubMedCrossRefGoogle Scholar
  49. Hutton CA, Perugini MA, Gerrard JA (2007) Inhibition of lysine biosynthesis: an evolving antibiotic strategy. Mol BioSyst 3:458–465PubMedCrossRefGoogle Scholar
  50. Igartuburu JM, del Río RM, Massanet GM, Montiel JA, Pando E, Luis FR (1991) Study of agricultural by-products. Extractability and amino acid composition of grapeseed (Vitis vinifera) proteins. J Sci Food Agric 54:489–493CrossRefGoogle Scholar
  51. Kefala G, Evans GL, Griffin MD, Devenish SR, Pearce FG, Perugini MA, Gerrard JA, Weiss MS, Dobson RC (2008) Crystal structure and kinetic study of dihydrodipicolinate synthase from Mycobacterium tuberculosis. Biochem J 411:351–360PubMedCrossRefGoogle Scholar
  52. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797PubMedCrossRefGoogle Scholar
  53. Kumpaisal R, Hashimoto T, Yamada Y (1987) Purification and characterization of dihydrodipicolinate synthase from wheat suspension cultures. Plant Physiol 85:145–151PubMedCrossRefGoogle Scholar
  54. Kwon T, Sasahara T, Abe T (1995) Lysine accumulation in transgenic tobacco expressing dihydrodipicolinate synthase of Escherichia coli. J Plant Physiol 146:615–621CrossRefGoogle Scholar
  55. Laue TM, Shah BD, Ridgeway TM, Pelletier SL (1992) Analytical ultracentrifugation in biochemistry and polymer science. The Royal Society of Chemistry, Cambridge, pp 90–125Google Scholar
  56. Leslie AGW, Powell HR (2007) Processing diffraction data with mosflm. In: Read RJ, Sussman JL (eds) Evolving methods for macromolecular crystallography. Springer, Dordrecht, pp 41–51CrossRefGoogle Scholar
  57. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem 102:3586–3616Google Scholar
  58. Matthews BF, Widholm JM (1979) Expression of aspartokinase, dihydrodipicolinic acid synthase and homoserine dehydrogenase during growth of carrot cell suspension cultures on lysine- and threonine-supplemented media. Z Naturforsch C 34:1177–1185PubMedGoogle Scholar
  59. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674PubMedCrossRefGoogle Scholar
  60. McPhillips TM, McPhillips SE, Chiu HJ, Cohen AE, Deacon AM, Ellis PJ, Garman E, Gonzalez A, Sauter NK, Phizackerley RP, Soltis SM, Kuhn P (2002) Blu-Ice and the distributed control system: software for data acquisition and instrument control at macromolecular crystallography beamlines. J Synchrotron Radiat 9:401–406PubMedCrossRefGoogle Scholar
  61. Mirwaldt C, Korndorfer I, Huber R (1995) The crystal structure of dihydrodipicolinate synthase from Escherichia coli at 2.5 A resolution. J Mol Biol 246:227–239PubMedCrossRefGoogle Scholar
  62. Mitsakos V, Dobson RCJ, Pearce FG, Devenish SR, Evans GL, Burgess BR, Perugini MA, Gerrard JA, Hutton CA (2008) Inhibiting dihydrodipicolinate synthase across species: towards specificity for pathogens? Bioorg Med Chem Lett 18:842–844PubMedCrossRefGoogle Scholar
  63. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crysta D53:240–255Google Scholar
  64. Muscroft-Taylor AC, Soares da Costa TP, Gerrard JA (2010) New insights into the mechanism of dihydrodipicolinate synthase using isothermal titration calorimetry. Biochimie 92:254–262PubMedCrossRefGoogle Scholar
  65. Negrutiu I, Cattoir-Reynearts A, Verbruggen I, Jacobs M (1984) Lysine overproducer mutants with an altered dihydrodipicolinate synthase from protoplast culture of Nicotiana sylvestris. Theor Appl Genet 68:11–20CrossRefGoogle Scholar
  66. Nicholson K, Tarlyn N, Armour T, Swanson M, Dhingra A (2012) Effect of phyllotactic position and cultural treatments toward successful direct shoot organogenesis in dwarf ‘Pixie’ grapevine (Vitis vinifera L.). Plant Cell Tissue Organ Cult (PCTOC) 111:123–129CrossRefGoogle Scholar
  67. Nunan KJ, Sims IM, Bacic A, Robinson SP, Fincher GB (1997) Isolation and characterization of cell walls from the mesocarp of mature grape berries (Vitis vinifera). Planta 203:93–100Google Scholar
  68. Perl A, Shaul O, Galili G (1992) Regulation of lysine synthesis in transgenic potato plants expressing a bacterial dihydrodipicolinate synthase in their chloroplasts. Plant Mol Biol 19:815–823PubMedCrossRefGoogle Scholar
  69. Perugini MA, Schuck P, Howlett GJ (2000) Self-association of human apolipoprotein E3 and E4 in the presence and absence of phospholipid. J Biol Chem 275:36758–36765PubMedCrossRefGoogle Scholar
  70. Perugini MA, Griffin MDW, Smith BJ, Webb LE, Davis AJ, Handman E, Gerrard JA (2005) Insight into the self-association of key enzymes from pathogenic species. Eur Biophys J 34:469–476PubMedCrossRefGoogle Scholar
  71. Phenix CP, Palmer DR (2008) Isothermal titration microcalorimetry reveals the cooperative and noncompetitive nature of inhibition of Sinorhizobium meliloti L5–30 dihydrodipicolinate synthase by (S)-lysine. Biochemistry 47:7779–7781PubMedCrossRefGoogle Scholar
  72. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comp Chem 26:1781–1802CrossRefGoogle Scholar
  73. Ricard J, Cornish-Bowden A (1987) Co-operative and allosteric enzymes: 20 years on. Eur J Biochem 166:255–272PubMedCrossRefGoogle Scholar
  74. Sarrobert C, Thibaud MC, Contard-David P, Gineste S, Bechtold N, Robaglia C, Nussaume L (2000) Identification of an Arabidopsis thaliana mutant accumulating threonine resulting from mutation in a new dihydrodipicolinate synthase gene. Plant J 24:357–367PubMedCrossRefGoogle Scholar
  75. Shaul O, Galili G (1992a) Increased lysine synthesis in tobacco plants that express high levels of bacterial dihydrodipicolinate synthase in their chloroplasts. Plant J 2:203–209CrossRefGoogle Scholar
  76. Shaul O, Galili G (1992b) Threonine overproduction in transgenic tobacco plants expressing a mutant desensitized aspartate kinase of Escherichia coli. Plant Physiol 100:1157–1163PubMedCrossRefGoogle Scholar
  77. Shaul O, Galili G (1993) Concerted regulation of lysine and threonine synthesis in tobacco plants expressing bacterial feedback-insensitive aspartate kinase and dihydrodipicolinate synthase. Plant Mol Biol 23:759–768PubMedCrossRefGoogle Scholar
  78. Shaver JM, Bittel DC, Sellner JM, Frisch DA, Somers DA, Gengenbach BG (1996) Single-amino acid substitutions eliminate lysine inhibition of maize dihydrodipicolinate synthase. Proc Natl Acad Sci USA 93:1962–1966PubMedCrossRefGoogle Scholar
  79. Silk GW, Matthews BF (1997) Soybean dapA mutations encoding lysine-insensitive dihydrodipicolinate synthase. Plant Mol Biol 33:931–933PubMedCrossRefGoogle Scholar
  80. Soares da Costa TP, Muscroft-Taylor AC, Dobson RCJ, Devenish SRA, Jameson GB, Gerrard JA (2010) How essential is the ‘essential’ active-site lysine in dihydrodipicolinate synthase? Biochimie 92:837–845PubMedCrossRefGoogle Scholar
  81. Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287:252–260PubMedCrossRefGoogle Scholar
  82. Turnbull WB, Daranas AH (2003) On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J Am Chem Soc 125:14859–14866PubMedCrossRefGoogle Scholar
  83. van der Meer IM, Bovy AG, Bosch D (2001) Plant-based raw material: improved food quality for better nutrition via plant genomics. Curr Opin Biotechnol 12:488–492PubMedCrossRefGoogle Scholar
  84. Vauterin M, Jacobs M (1994) Isolation of a poplar and an Arabidopsis thaliana dihydrodipicolinate synthase cDNA clone. Plant Mol Biol 25:545–550PubMedCrossRefGoogle Scholar
  85. Vauterin M, Frankard V, Jacobs M (2000) Functional rescue of a bacterial dapA auxotroph with a plant cDNA library selects for mutant clones encoding a feedback-insensitive dihydrodipicolinate synthase. Plant J 21:239–248PubMedCrossRefGoogle Scholar
  86. Vivier MA, Pretorius IS (2002) Genetically tailored grapevines for the wine industry. Trends Biotechnol 20:472–478PubMedCrossRefGoogle Scholar
  87. Voss JE, Scally SW, Taylor NL, Atkinson SC, Griffin MD, Hutton CA, Parker MW, Alderton MR, Gerrard JA, Dobson RC, Dogovski C, Perugini MA (2010) Substrate-mediated stabilization of a tetrameric drug target reveals Achilles heel in anthrax. J Biol Chem 285:5188–5195PubMedCrossRefGoogle Scholar
  88. Wallsgrove RM, Mazelis M (1980) The enzymology of lysine biosynthesis in higher plants: complete localization of the regulatory enzyme dihydrodipicolinate synthase in the chloroplasts of spinach leaves. FEBS Lett 116:189–192PubMedCrossRefGoogle Scholar
  89. Webster FH, Lechowich RV (1970) Partial purification and characterization of dihydrodipicolinic acid synthetase from sporulating Bacillus megaterium. J Bacteriol 101:118–126PubMedGoogle Scholar
  90. Yamakura F, Ikeda Y, Kimura K, Sasakawa T (1974) Partial purification and some properties of pyruvate-aspartic semialdehyde condensing enzyme from sporulating Bacillus subtilis. J Biochem 76:611–621PubMedGoogle Scholar
  91. Yugari Y, Gilvarg C (1965) The condensation step in diaminopimelate synthesis. J Biol Chem 240:4710–4716PubMedGoogle Scholar
  92. Zhu X, Galili G (2003) Increased lysine synthesis coupled with a knockout of its catabolism synergistically boosts lysine content and also transregulates the metabolism of other amino acids in Arabidopsis seeds. Plant Cell 15:845–853PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sarah C. Atkinson
    • 1
    • 2
  • Con Dogovski
    • 1
  • Matthew T. Downton
    • 3
  • Peter E. Czabotar
    • 4
  • Renwick C. J. Dobson
    • 2
    • 5
  • Juliet A. Gerrard
    • 5
    • 6
  • John Wagner
    • 3
  • Matthew A. Perugini
    • 1
    • 2
    Email author
  1. 1.Department of Biochemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneAustralia
  2. 2.Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneAustralia
  3. 3.IBM Research Collaboratory for Life Sciences-MelbourneVictorian Life Sciences Computation InitiativeCarltonAustralia
  4. 4.The Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
  5. 5.Biomolecular Interaction Centre and School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
  6. 6.Industrial Research LimitedLower HuttNew Zealand

Personalised recommendations