Plant Molecular Biology

, Volume 81, Issue 4–5, pp 363–378 | Cite as

Transcriptomic analysis of rice (Oryza sativa) endosperm using the RNA-Seq technique



The endosperm plays an important role in seed formation and germination, especially in rice (Oryza sativa). We used a high-throughput sequencing technique (RNA-Seq) to reveal the molecular mechanisms involved in rice endosperm development. Three cDNA libraries were taken from rice endosperm at 3, 6 and 10 days after pollination (DAP), which resulted in the detection of 21,596, 20,910 and 19,459 expressed gens, respectively. By ERANGE, we identified 10,371 differentially expressed genes (log2Ratio ≥1, FDR ≤0.001). The results were compared against three public databases (Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and MapMan) in order to annotate the gene descriptions, associate them with gene ontology terms and to assign each to pathways. A large number of genes related to ribosomes, the spliceosome and oxidative phosphorylation were found to be expressed in the early and middle stages. Plant hormone, galactose metabolism and carbon fixation related genes showed a significant increase in expression at the middle stage, whereas genes for defense against disease or response to stress as well as genes for starch/sucrose metabolism were strongly expressed during the later stages of endosperm development. Interestingly, most metabolic pathways were down-regulated between 3 and 10 DAP except for those involved in the accumulation of material, such as starch/sucrose and protein metabolism. We also identified the expression of 1,118 putative transcription factor genes in endosperm development. The RNA-Seq results provide further systematic understanding of rice endosperm development at a fine scale and a foundation for future studies.


Endosperm development Rice Transcriptome High-throughput sequencing Storage Programmed cell death 

Supplementary material

11103_2013_9_MOESM1_ESM.xls (3.2 mb)
Supplementary material 1 (XLS 3314 kb). Supplemental Table 1 A total of 23,836 genes derived from three cDNA libraries. The GeneID, length of gene, RPKM of three stages and the expression pattern are presented in this table
11103_2013_9_MOESM2_ESM.xls (1.2 mb)
Supplementary material 2 (XLS 1246 kb). Supplemental Table 2 A table listing 10,371 differentially expressed genes (DEGs) during rice endosperm development. We use FDR < 0.001 and the absolute value of log2Ratio ≥ 1 as the threshold to judge the significance of gene expression difference. The RPKM of three stages and expression pattern for DEGs are presented in the table
11103_2013_9_MOESM3_ESM.xls (52 kb)
Supplementary material 3 (XLS 51 kb). Supplemental Table 3 Overview of all 123 KEGG pathways. All 10,371 DEGs are assigned to 123 KEGG pathways. The KEGG functional class, number, RPKM of three stages, expression type and expression pattern of members are presented in this table
11103_2013_9_MOESM4_ESM.xls (68 kb)
Supplementary material 4 (XLS 67 kb). Supplemental Table 4 Detail of all 211 branch pathways in 35 MapMan major pathways. The MapMan functional class, number, RPKM of three stages, expression type and expression pattern of members are presented in the table
11103_2013_9_MOESM5_ESM.xls (34 kb)
Supplementary material 5 (XLS 34 kb). Supplemental Table 5 All 55 transcription factor (TF) families found in the result. 1,118 putative TF genes are identified in all 23,836 genes. The TF family name, number, RPKM, expression pattern and expression pattern of TF family’s members are presented in the table
11103_2013_9_MOESM6_ESM.xls (2.8 mb)
Supplementary material 6 (XLS 2896 kb). Supplemental Table 6 Detail of top 100 up-regulated genes between R1 and R3. The gene ID, gene description and difference RPKM (R3-R1) are presented in the table
11103_2013_9_MOESM7_ESM.xls (25 kb)
Supplementary material 7 (XLS 25 kb). Supplemental Table 7 Thirteen PCD-related genes identified in the RNA-Seq result. The name of gene, gene ID, description and RPKM of three stages are presented in the table
11103_2013_9_MOESM8_ESM.doc (43 kb)
Supplementary material 8 (DOC 43 kb). Supplemental Table 8 Primers used in the analysis of rice endosperm development. UBQ5 is used as internal control to standardize the results


  1. Balwierz PJ, Carninci P, Daub CO, Kawai J, Hayashizaki Y, Van Belle W, Beisel C, Van Nimwegen E (2009) Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data. Genome Biol 10:R79. doi:10.1186/gb-2009-10-7-r79 PubMedCrossRefGoogle Scholar
  2. Bellin D, Ferrarini A, Chimento A, Kaiser O, Levenkova N, Bouffard P, Delledonne M (2009) Combining next-generation pyrosequencing with microarray for large scale expression analysis in non-model species. BMC Genomics 10:555. doi:10.1186/1471-2164-10-555 PubMedCrossRefGoogle Scholar
  3. Berger F (1999) Endosperm development. Curr Opin Plant Biol 2:28–32. doi:10.1016/S1369-5266(99)80006-5 PubMedCrossRefGoogle Scholar
  4. Bethke PC, Lonsdale JE, Fath A, Jones RL (1999) Hormonally regulated programmed cell death in barley aleurone cells. Plant Cell 11:1033–1046. doi:10.1105/tpc.11.6.1033 PubMedGoogle Scholar
  5. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pages F, Trajanoski Z, Galon J (2009) ClueGO: a Cytoscape plug-into decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093. doi:10.1093/bioinformatics/btp101 PubMedCrossRefGoogle Scholar
  6. Bleeker PM, Spyropoulou EA, Diergaarde PJ, Volpin H, De Both MT, Zerbe P, Bohlmann J, Falara V, Matsuba Y, Pichersky E, Haring MA, Schuurink RC (2011) RNA-seq discovery, functional characterization, and comparison of sesquiterpene synthases from Solanum lycopersicum and Solanum habrochaites trichomes. Plant Mol Biol 77:323–336. doi:10.1007/s11103-011-9813-x PubMedCrossRefGoogle Scholar
  7. Cavel E, Pillot M, Pontier D, Lahmy S, Bies-Etheve N, Vega D, Grimanelli D, Lagrange T (2011) A plant-specific transcription factor IIB-related protein, pBRP2, is involved in endosperm growth control. PLoS ONE 6:e17216. doi:10.1371/journal.pone.0017216 PubMedCrossRefGoogle Scholar
  8. Chen X, Wang Y, Li J, Jiang A, Cheng Y, Zhang W (2009) Mitochondrial proteome during salt stress-induced programmed cell death in rice. Plant Physiol Biochem 47:407–415. doi:10.1016/j.plaphy.2008.12.021 PubMedCrossRefGoogle Scholar
  9. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676. doi:10.1093/bioinformatics/bti610 PubMedCrossRefGoogle Scholar
  10. Gaur VS, Singh US, Kumar A (2010) Transcriptional profiling and in silico analysis of Dof transcription factor gene family for understanding their regulation during seed development of rice Oryza sativa L. Mol Biol Rep 38:2827–2848. doi:10.1007/s11033-010-0429-z PubMedCrossRefGoogle Scholar
  11. Gilchrist DG (1998) Programmed cell death in plant disease: the purpose and promise of cellular suicide. Annu Rev Phytopathol 36:393–414. doi:10.1146/annurev.phyto.36.1.393 PubMedCrossRefGoogle Scholar
  12. Girke T, Todd J, Ruuska S, White J, Benning C, Ohlrogge J (2000) Microarray analysis of developing Arabidopsis seeds. Plant Physiol 124:1570–1581. doi:10.1104/pp.124.4.1570 PubMedCrossRefGoogle Scholar
  13. Goldberg RB, Paiva GD, Yadegari R (1994) Plant embryogenesis: zygote to seed. Science 266:605–614. doi:10.1126/science.266.5185.605 PubMedCrossRefGoogle Scholar
  14. Hatsugai N, Kuroyanagi M, Yamada K, Meshi T, Tsuda S, Kondo M, Nishimura M, Hara-Nishimura I (2004) A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305:855–858. doi:10.1126/stke.2452004tw287 PubMedCrossRefGoogle Scholar
  15. Ishimaru T, Matsuda T, Ohsugi R, Yamagishi T (2003) Morphological development of rice caryopses located at the different positions in a panicle from early to middle stage of grain filling. Funct Plant Biol 30:1139–1149. doi:10.1071/FP03122 CrossRefGoogle Scholar
  16. Jiao BB, Wang JJ, Zhu XD, Zeng LJ, Li Q, He ZH (2012) A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice. Mol Plant 5:205–217. doi:10.1093/mp/ssr081 PubMedCrossRefGoogle Scholar
  17. Johnson AA, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J, Lombi E, Tester M (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron-and zinc-biofortification of rice endosperm. PLoS ONE 6:e24476. doi:10.1371/journal.pone.0024476 PubMedCrossRefGoogle Scholar
  18. Kim SG, Kim SY, Park CM (2007) A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 226:647–654. doi:10.1007/s00425-007-0513-3 PubMedCrossRefGoogle Scholar
  19. Kondou H, Ooka H, Yamada H, Satoh K, Kikuchi S, Takahara Y, Yamamoto K (2006) Microarray analysis of gene expression at initial stages of rice seed development. Breed Sci 56:235–242. doi:10.1270/jsbbs.56.235 CrossRefGoogle Scholar
  20. Lan SY, Zhong FX, Yang ZM, Jin DM, Xu ZX (2004) The starchy endosperm denucleation by a process of programmed cell death during rice grain development. Acta Biol Exp Sin 37:34–44Google Scholar
  21. Laudencia-Chingcuanco DL, Stamova BS, You FM, Lazo GR, Beckles DM, Anderson OD (2007) Transcriptional profiling of wheat caryopsis development using cDNA microarrays. Plant Mol Biol 63:651–668. doi:10.1007/s11103-006-9114-y PubMedCrossRefGoogle Scholar
  22. Le BH, Wagmaister JA, Kawashima T, Bui AQ, Harada JJ, Goldberg RB (2007) Using genomics to study legume seed development. Plant Physiol 144:562–574. doi:10.1104/pp.107.100362 PubMedCrossRefGoogle Scholar
  23. Lee SC, Luan S (2011) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant, Cell Environ 35:53–60. doi:10.1111/j.1365-3040.2011.02426.x CrossRefGoogle Scholar
  24. Li D, Liu H, Zhang H, Wang X, Song F (2008) OsBIRH1, a DEAD-box RNA helicase with functions in modulating defence responses against pathogen infection and oxidative stress. J Exp Bot 59:2133–2146. doi:10.1093/jxb/ern072 PubMedCrossRefGoogle Scholar
  25. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2009) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272. doi:10.1101/gr.097261.109 PubMedCrossRefGoogle Scholar
  26. Li X, Gao X, Wei Y, Deng L, Ouyang Y, Chen G, Li X, Zhang Q, Wu C (2011) Rice APOPTOSIS INHIBITOR5 coupled with two DEAD-box adenosine 5’-triphosphate-dependent RNA helicases regulates tapetum degeneration. Plant Cell 23:1416–1434. doi:10.1105/tpc.110.082636 PubMedCrossRefGoogle Scholar
  27. Li J, Chu H, Zhang Y, Mou T, Wu C, Zhang Q, Xu J (2012) The rice HGW gene encodes a ubiquitin-associated (UBA) domain protein that regulates heading date and grain weight. PLoS ONE 7:e34231. doi:10.1371/journal.pone.0034231 PubMedCrossRefGoogle Scholar
  28. Lister R, Gregory BD, Ecker JR (2009) Next is now: new technologies for sequencing of genomes, transcriptomes, and beyond. Curr Opin Plant Biol 12:107–118. doi:10.1016/j.pbi.2008.11.004 PubMedCrossRefGoogle Scholar
  29. Liu X, Guo T, Wan X, Wang H, Zhu M, Li A, Su N, Shen Y, Mao B, Zhai H, Mao L, Wan J (2010) Transcriptome analysis of grain-filling caryopses reveals involvement of multiple regulatory pathways in chalky grain formation in rice. BMC Genomics 11:730. doi:10.1186/1471-2164-11-730 PubMedCrossRefGoogle Scholar
  30. Lord CE, Gunawardena AH (2011) Environmentally induced programmed cell death in leaf protoplasts of Aponogeton madagascariensis. Planta 233:407–421. doi:10.1007/s00425-010-1304-9 PubMedCrossRefGoogle Scholar
  31. Luo M, Taylor JM, Spriggs A, Zhang H, Wu X, Russell S, Singh M, Koltunow A (2011) A genome-wide survey of imprinted genes in rice seeds reveals imprinting primarily occurs in the endosperm. PLoS Genet 7:e1002125. doi:10.1371/journal.pgen.1002125 PubMedCrossRefGoogle Scholar
  32. Marguerat S, Bahler J (2010) RNA-seq: from technology to biology. Cell Mol Life Sci 67:569–579. doi:10.1007/s00018-009-0180-6 PubMedCrossRefGoogle Scholar
  33. Martinez M, Abraham Z, Carbonero P, Diaz I (2005) Comparative phylogenetic analysis of cystatin gene families from arabidopsis, rice and barley. Mol Genet Genomics 273:423–432. doi:10.1007/s00438-005-1147-4 PubMedCrossRefGoogle Scholar
  34. Mena M, Vicente-Carbajosa J, Schmidt RJ, Carbonero P (1998) An endosperm-specific DOF protein from barley, highly conserved in wheat, binds to and activates transcription from the prolamin-box of a native B-hordein promoter in barley endosperm. Plant J 16:53–62. doi:10.1046/j.1365-313x.1998.00275.x PubMedCrossRefGoogle Scholar
  35. Morrison IN, Kuo J, O’Brien TP (1975) Histochemistry and fine structure of developing wheat aleurone cells. Planta 123:105–116. doi:10.1007/BF00383859 CrossRefGoogle Scholar
  36. Olsen OA, Potter RH, Kalla R (1992) Histo-differentiation and molecular biology of developing cereal endosperm. Seed Sci Res 2:117–131. doi:10.1017/S0960258500001240 CrossRefGoogle Scholar
  37. Qi Y, Wang H, Zou Y, Liu C, Liu Y, Wang Y, Zhang W (2011) Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. FEBS Lett 585:231–239. doi:10.1016/j.febslet.2010.11.051 PubMedCrossRefGoogle Scholar
  38. Steffens B, Sauter M (2005) Epidermal cell death in rice is regulated by ethylene, gibberellin, and abscisic acid. Plant Physiol 139:713–721. doi:10.1104/pp.105.064469 PubMedCrossRefGoogle Scholar
  39. Venu R, Sreerekha M, Nobuta K, Belo A, Ning Y, An G, Meyers BC, Wang GL (2011) Deep sequencing reveals the complex and coordinated transcriptional regulation of genes related to grain quality in rice cultivars. BMC Genomics 12:190. doi:10.1186/1471-2164-12-190 PubMedCrossRefGoogle Scholar
  40. Verza NC, Silve TR, Neto GC, Nogueira FT, Fisch PH, Rosa VE, Rebello MM, Vettore AL, Silva FR, Arruda P (2005) Endosperm-preferred expression of maize genes as revealed by transcriptome-wide analysis of expressed sequence tags. Plant Mol Biol 59:363–374. doi:10.1007/s11103-005-8924-7 PubMedCrossRefGoogle Scholar
  41. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. doi:10.1038/nrg2484 PubMedCrossRefGoogle Scholar
  42. Wang L, Feng Z, Wang X, Wang X, Zhang X (2010a) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138. doi:10.1093/bioinformatics/btp612 PubMedCrossRefGoogle Scholar
  43. Wang Y, Zha X, Zhang S, Qian X, Dong X, Sun F, Yang J (2010b) Down-regulation of the OsPDCD5 gene induced photoperiod-sensitive male sterility in rice. Plant Sci 178:221–228. doi:10.1016/j.plantsci.2009.12.001 CrossRefGoogle Scholar
  44. Wei CX, Xu ZX, Lan SY (2002) Ultrastructural features of nucleus degradation during programmed cell death of starchy endosperm cells in rice. Acta Bot Sin 44:1396–1402Google Scholar
  45. Wu M, Huang J, Xu S, Ling T, Xie Y, Shen W (2011) Haem oxygenase delays programmed cell death in wheat aleurone layers by modulation of hydrogen peroxide metabolism. J Exp Bot 62:235–248. doi:10.1093/jxb/erq261 PubMedCrossRefGoogle Scholar
  46. Xu SB, Li T, Deng ZY, Chong K, Xue Y, Wang T (2008) Dynamic proteomic analysis reveals a switch between central carbon metabolism and alcoholic fermentation in rice filling grains. Plant Physiol 148:908–925. doi:10.1104/pp.108.125633 PubMedCrossRefGoogle Scholar
  47. Xu H, Gao Y, Wang J (2012) Transcriptomic analysis of rice (Oryza sativa) developing embryos using the RNA-Seq technique. PLoS ONE 7:e30646. doi:10.1371/journal.pone.0030646 PubMedCrossRefGoogle Scholar
  48. Xue LJ, Zhang JJ, Xue HW (2012) Genome-wide analysis of the complex transcriptional networks of rice developing seeds. PLoS ONE 7:e31081. doi:10.1371/journal.pone.0031081 PubMedCrossRefGoogle Scholar
  49. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:293–297. doi:10.1093/nar/gkl031 CrossRefGoogle Scholar
  50. Young TE, Gallie DR (1999) Analysis of programmed cell death in wheat endosperm reveals differences in endosperm development between cereals. Plant Mol Biol 39:915–926. doi:10.1023/A:1006134027834 PubMedCrossRefGoogle Scholar
  51. Young TE, Gallie DR, DeMason DA (1997) Ethylene-mediated programmed cell death during maize endosperm development of wild-type and shrunken2 Genotypes. Plant Physiol 115:737–751. doi:10.1104/pp.115.2.737 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina

Personalised recommendations