Plant Molecular Biology

, Volume 80, Issue 6, pp 621–629 | Cite as

Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa

  • Hiroki Ueno
  • Etsuo Matsumoto
  • Daisuke Aruga
  • Satoshi Kitagawa
  • Hideo Matsumura
  • Nobuaki Hayashida


Clubroot disease is one of the major diseases affecting Brassicaceae crops, and a number of these crops grown commercially, such as Chinese cabbage (Brassica rapa L. ssp. pekinensis), are known to be highly susceptible to clubroot disease. To provide protection from this disease, plant breeders have introduced genes for resistance to clubroot from the European turnip into susceptible lines. The CRa gene confers specific resistance to the clubroot pathogen Plasmodiophora brassicae isolate M85. Fine mapping of the CRa locus using synteny to the Arabidopsis thaliana genome and partial genome sequences of B. rapa revealed a candidate gene encoding a TIR-NBS-LRR protein. Several structural differences in this candidate gene were found between susceptible and resistant lines, and CRa expression was observed only in the resistant line. Four mutant lines lacking clubroot resistance were obtained by the UV irradiation of pollen from a resistant line, and all of these mutant lines carried independent mutations in the candidate TIR-NBS-LRR gene. This genetic and molecular evidence strongly suggests that the identified gene is CRa. This is the first report on the molecular characterization of a clubroot Resistance gene in Brassicaceae and of the disease resistance gene in B. rapa.


Clubroot Resistance gene CRa Chinese cabbage Brassicaceae UV mutation 

Supplementary material

11103_2012_9971_MOESM1_ESM.doc (112 kb)
Supplementary material 1 (DOC 112 kb)
11103_2012_9971_MOESM2_ESM.ppt (442 kb)
Supplementary material 2 (PPT 442 kb)
11103_2012_9971_MOESM3_ESM.doc (30 kb)
Supplementary material 3 (DOC 29 kb)


  1. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  2. Ayliffe MA, Frost DV, Finnegan EJ, Lawrence GJ, Anderson PA, Ellis JG (1999) Analysis of alternative transcripts of the flax L6 rust resistance gene. Plant J 17:287–292PubMedCrossRefGoogle Scholar
  3. Ballvora A, Ercolano MR, Weiss J, Meksem K, Bormann CA, Oberhagemann P, Salamini F, Gebhardt C (2002) The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant J 30:361–371PubMedCrossRefGoogle Scholar
  4. Bernoux M, Ellis JG, Dodds PN (2011) New insights in plant immunity signaling activation. Curr Opin Plant Biol 14:512–518PubMedCrossRefGoogle Scholar
  5. Choi SR, Teakle GR, Plaha P, Kim JH, Allender CJ, Beynon E, Piao ZY, Soengas P, Han TH, King GJ, Barker GC, Hand P, Lydiate DJ, Batley J, Edwards D, Koo DH, Bang JW, Park BS, Lim YP (2007) The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet 115:777–792PubMedCrossRefGoogle Scholar
  6. DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7:1243–1249PubMedCrossRefGoogle Scholar
  7. Diederichsen E, Frauen M, Linders EGA, Hatakeyama K, Hirai M (2009) Status and perspectives of clubroot resistance breeding in crucifer crops. J Plant Growth Regul 28:265–281CrossRefGoogle Scholar
  8. Dinesh-Kumar SP, Baker BJ (2000) Alternatively spliced N resistance gene transcripts: their possible role in tobacco mosaic virus resistance. Proc Natl Acad Sci USA 97:1908–1913PubMedCrossRefGoogle Scholar
  9. Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349PubMedCrossRefGoogle Scholar
  10. Frost D, Way H, Howles P, Luck J, Manners J, Hardham A, Finnegan J, Ellis J (2004) Tobacco transgenic for the flax rust resistance gene L expresses allele-specific activation of defense responses. Mol Plant Microbe Interact 17:224–232PubMedCrossRefGoogle Scholar
  11. Gassmann W (2008) Alternative splicing in plant defense. Curr Top Microbiol 326:219–233CrossRefGoogle Scholar
  12. Hayashida N, Takabatake Y, Nakazawa N, Aruga D, Nakanishi H, Taguchi G, SakaMoto K, Matsumoto E (2008) Construction of a practical SCAR marker linked to clubroot resistance in Chinese cabbage, with intensive analysis of HC352b genes. J Jpn Soc Hortic Sci 77:150–154CrossRefGoogle Scholar
  13. Horiguchi G, Kodama H, Iba K (2001) Characterization of Arabidopsis mutants that are associated with altered C18 unsaturated fatty acid metabolism. Plant Sci 161:1117–1123CrossRefGoogle Scholar
  14. Howard RJ, Strelkov SE, Harding MW (2010) Clubroot of cruciferous crops—new perspectives on an old disease. Can J Plant Pathol 32:43–57CrossRefGoogle Scholar
  15. Jia Z, Cui Y, Li Y, Wang X, Du Y, Huang S (2010) Inducible positive mutant screening system to unveil the signaling pathway of late blight resistance. J Integr Plant Biol 52:476–484PubMedGoogle Scholar
  16. Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Ann Bot Lond 95:229–235CrossRefGoogle Scholar
  17. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  18. Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13:181–185PubMedCrossRefGoogle Scholar
  19. Kuginuki Y, Yoshikawa H, Hirai M (1999) Variation in virulence of Plasmodiophora brassicae in Japan tested with clubroot-resistant cultivars of Chinese cabbage (Brassica rapa L. ssp. pekinensis). Eur J Plant Pathol 105:327–332CrossRefGoogle Scholar
  20. Leister D (2004) Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends Genet 20:116–122PubMedCrossRefGoogle Scholar
  21. Marathe R, Anandalakshmi R, Liu YL, Dinesh-Kumar SP (2002) The tobacco mosaic virus resistance gene, N. Mol Plant Pathol 3:167–172PubMedCrossRefGoogle Scholar
  22. Matsumoto E, Yasui C, Ohi M, Tsukada M (1998) Linkage analysis of RFLP markers for clubroot resistance and pigmentation in Chinese cabbage (Brassica rapa ssp. pekinensis). Euphytica 104:79–86CrossRefGoogle Scholar
  23. Matsumoto E, Hayashida N, Sakamoto K, Ohi M (2005) Behavior of DNA markers linked to a clubroot resistance gene in segregating populations of Chinese cabbage (Brassica rapa spp. pekinensis). J Jpn Soc Hortic Sci 74:367–373CrossRefGoogle Scholar
  24. Matsumoto E, Ueno H, Aruga D, Sakamoto K, Hayashida N (2012) Accumulation of three clubroot resistance genes through marker-assisted selection in Chinese cabbage (Brassica rapa ssp. pekinensis). J Jpn Soc Hortic Sci 81:184–190CrossRefGoogle Scholar
  25. Matsumura H, Bin Nasir KH, Yoshida K, Ito A, Kahl G, Kruger DH, Terauchi R (2006) SuperSAGE array: the direct use of 26-base-pair transcript tags in oligonucleotide arrays. Nat Methods 3:469–474PubMedCrossRefGoogle Scholar
  26. Mun JH, Kwon SJ, Yang TJ, Kim HS, Choi BS, Baek S, Kim JS, Jin M, Kim JA, Lim MH, Lee SI, Kim HI, Kim H, Lim YP, Park BS (2008) The first generation of a BAC-based physical map of Brassica rapa. BMC Genomics 9:280–291PubMedCrossRefGoogle Scholar
  27. Mun JH, Yu HJ, Park S, Park BS (2009) Genome-wide identification of NBS-encoding resistance genes in Brassica rapa. Mol Genet Genomics 282:617–631PubMedCrossRefGoogle Scholar
  28. Naito K, Kusaba M, Shikazono N, Takano T, Tanaka A, Tanisaka T, Nishimura M (2005) Transmissible and nontransmissible mutations induced by irradiating Arabidopsis thaliana pollen with gamma-rays and carbon ions. Genetics 169:881–889PubMedCrossRefGoogle Scholar
  29. Nakanishi H, Suzuki K, Jouke T, Kodaira R, Taguchi G, Okazaki M, Hayashida N (2004) Collection and analysis of Arabidopsis color mutants. Endocytobiosis Cell Res 15:328–338Google Scholar
  30. Nakanishi H, Nozue H, Suzuki K, Kaneko Y, Taguchi G, Hayashida N (2005) Characterization of the Arabidopsis thaliana mutant pcb2 which accumulates divinyl chlorophylls. Plant Cell Physiol 46:467–473PubMedCrossRefGoogle Scholar
  31. Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam DC, Undan J, Ito A, Sone T, Terauchi R (2011) A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J 66:467–479PubMedCrossRefGoogle Scholar
  32. Piao ZY, Deng YQ, Choi SR, Park YJ, Lim YP (2004) SCAR and CAPS mapping of CRb, a gene conferring resistance to Plasmodiophora brassicae in Chinese cabbage (Brassica rapa ssp. pekinensis). Theor Appl Genet 108:1458–1465PubMedCrossRefGoogle Scholar
  33. Piao ZY, Ramchiary N, Lim YP (2009) Genetics of clubroot resistance in brassica species. J Plant Growth Regul 28:252–264CrossRefGoogle Scholar
  34. Rafiqi M, Bernoux M, Ellis JG, Dodds PN (2009) In the trenches of plant pathogen recognition: role of NB-LRR proteins. Semin Cell Dev Biol 20:1017–1024PubMedCrossRefGoogle Scholar
  35. Saito M, Kubo N, Matsumoto S, Suwabe K, Tsukada M, Hirai M (2006) Fine mapping of the clubroot resistance gene, Crr3, in Brassica rapa. Theor Appl Genet 114:81–91PubMedCrossRefGoogle Scholar
  36. Sakamoto K, Saito A, Hayashida N, Taguchi G, Matsumoto E (2008) Mapping of isolate-specific QTLs for clubroot resistance in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Theor Appl Genet 117:759–767PubMedCrossRefGoogle Scholar
  37. Schmidt S, Lombardi M, Gardiner DM, Ayliffe M, Anderson PA (2007) The M flax rust resistance pre-mRNA is alternatively spliced and contains a complex upstream untranslated region. Theor Appl Genet 115:373–382PubMedCrossRefGoogle Scholar
  38. Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542PubMedCrossRefGoogle Scholar
  39. Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Fujimura M, Nunome T, Fukuoka H, Matsumoto S, Hirai M (2003) Identification of two loci for resistance to clubroot (Plasmodiophora brassicae Woronin) in Brassica rapa L. Theor Appl Genet 107:997–1002PubMedCrossRefGoogle Scholar
  40. Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hirai M, Matsumoto S (2006) Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics 173:309–319PubMedCrossRefGoogle Scholar
  41. Taguchi G, Ubukata T, Nozue H, Kobayashi Y, Takahi M, Yamamoto H, Hayashida N (2010) Malonylation is a key reaction in the metabolism of xenobiotic phenolic glucosides in Arabidopsis and tobacco. Plant J 63:1031–1041Google Scholar
  42. Takabatake R, Seo SM, Mitsuhara I, Tsuda S, Ohashi Y (2006) Accumulation of the two transcripts of the N gene, conferring resistance to tobacco mosaic virus, is probably important for N gene-dependent hypersensitive cell death. Plant Cell Physiol 47:254–261PubMedCrossRefGoogle Scholar
  43. Williams PH (1966) A system for the determination of races of Plasmodiophora brassicae that infect cabbage and rutabaga. Phytopathology 56:624–626Google Scholar
  44. Zhang X-C, Gassmann W (2007) Alternative splicing and mRNA levels of the disease resistance gene RPS4 are induced during defense responses. Plant Physiol 145:1577–1587PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Hiroki Ueno
    • 1
  • Etsuo Matsumoto
    • 2
  • Daisuke Aruga
    • 1
  • Satoshi Kitagawa
    • 3
  • Hideo Matsumura
    • 4
  • Nobuaki Hayashida
    • 5
  1. 1.Department of Bioscience and Textile TechnologyShinshu UniversityUedaJapan
  2. 2.Saku BranchNagano Vegetable and Ornamental Crops Experiment StationKomoroJapan
  3. 3.Department of Applied BiologyShinshu UniversityUedaJapan
  4. 4.Division of Gene Research, Department of Life Science, Research Center for Human and Environmental ScienceShinshu UniversityUedaJapan
  5. 5.Division of Applied Biology, Faculty of Textile Science and TechnologyShinshu UniversityUedaJapan

Personalised recommendations