Abstract
While studying blue light-independent effects of cryptochrome 1 (cry1) photoreceptor, we observed premature opening of the hook in cry1 mutants grown in complete darkness, a phenotype that resembles the one described for the heterotrimeric G-protein α subunit (GPA1) null mutant gpa1. Both cry1 and gpa1 also showed reduced accumulation of anthocyanin under blue light. These convergent gpa1 and cry1 phenotypes required the presence of sucrose in the growth media and were not additive in the cry1 gpa1 double mutant, suggesting context-dependent signaling convergence between cry1 and GPA1 signaling pathways. Both, gpa1 and cry1 mutants showed reduced GTP-binding activity. The cry1 mutant showed wild-type levels of GPA1 mRNA or GPA1 protein. However, an anti-transducin antibody (AS/7) typically used for plant Gα proteins, recognized a 54 kDa band in the wild type but not in gpa1 and cry1 mutants. We propose a model where cry1-mediated post-translational modification of GPA1 alters its GTP-binding activity.






Abbreviations
- cry:
-
Cryptochrome
- GPA1:
-
Heterotrimeric G-protein α subunit of Arabidopsis thaliana
- RL:
-
Red light
- FRL:
-
Far red light
- BL:
-
Blue light
- phy:
-
Phytochrome
- WT:
-
Wild type
- MS:
-
Murashige and Skoog basal medium
References
Abramoff M, Magelhaes P, Ram S (2004) Image processing with imageJ. Biophotonics Int 11:36–42
Ahmad M, Cashmore AR (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366(6451):162–166
Ahmad M, Lin C, Cashmore AR (1995) Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. Plant J 8(5):653–658
Assmann SM (2002) Heterotrimeric and unconventional GTP binding proteins in plant cell signaling. Plant Cell 14(Suppl):S355–S373
Bischoff F, Molendijk A, Rajendrakumar CS, Palme K (1999) GTP-binding proteins in plants. Cell Mol Life Sci 55(2):233–256
Boccalandro HE, Giordano CV, Ploschuk EL, Piccoli PN, Bottini R, Casal JJ (2011) Phototropins but not cryptochromes mediate the blue light-specific promotion of stomatal conductance, while both enhance photosynthesis and transpiration under full sunlight. Plant Physiol 158(3):1475–1484. doi:10.1104/pp.111.187237
Borochov-Neori H, Gindin E, Borochov A (1997) Response of melon plants to salt: 3. Modulation of GTP-binding proteins in root membranes. J Plant Physiol 150(3):355–361
Botto JF, Alonso-Blanco C, Garzaron I, Sanchez RA, Casal JJ (2003) The Cape Verde Islands allele of cryptochrome 2 enhances cotyledon unfolding in the absence of blue light in Arabidopsis. Plant Physiol 133(4):1547–1556. doi:10.1104/pp.103.029546
Botto JF, Ibarra S, Jones AM (2009) The heterotrimeric G-protein complex modulates light sensitivity in Arabidopsis thaliana seed germination. Photochem Photobiol 85(4):949–954. doi:10.1111/j.1751-1097.2008.00505.x
Bouly JP, Schleicher E, Dionisio-Sese M, Vandenbussche F, Van Der Straeten D, Bakrim N, Meier S, Batschauer A, Galland P, Bittl R, Ahmad M (2007) Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. J Biol Chem 282(13):9383–9391. doi:10.1074/jbc.M609842200
Bowler C, Yamagata H, Neuhaus G, Chua NH (1994) Phytochrome signal transduction pathways are regulated by reciprocal control mechanisms. Genes Dev 8(18):2188–2202
Bradford M (1976) A rapid and sensitive method for the quantiation of micrograms quantities of protein utilizing the principle of protein-dye. Anal Biochem 72:248–254
Brautigam CA, Smith BS, Ma Z, Palnitkar M, Tomchick DR, Machius M, Deisenhofer J (2004) Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana. Proc Natl Acad Sci USA 101(33):12142–12147
Bruggemann E, Handwerger K, Essex C, Storz G (1996) Analysis of fast neutron-generated mutants at the Arabidopsis thaliana HY4 locus. Plant J 10(4):755–760
Burney S, Hoang N, Caruso M, Dudkin EA, Ahmad M, Bouly JP (2009) Conformational change induced by ATP binding correlates with enhanced biological function of Arabidopsis cryptochrome. FEBS Lett 583(9):1427–1433. doi:10.1016/j.febslet.2009.03.040
Canamero RC, Bakrim N, Bouly JP, Garay A, Dudkin EE, Habricot Y, Ahmad M (2006) Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana. Planta 224(5):995–1003
Cashmore AR, Jarillo JA, Wu YJ, Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284(5415):760–765
Chen JG, Willard FS, Huang J, Liang J, Chasse SA, Jones AM, Siderovski DP (2003) A seven-transmembrane RGS protein that modulates plant cell proliferation. Science 301(5640):1728–1731. doi:10.1126/science.1087790
Chen JG, Gao Y, Jones AM (2006a) Differential roles of Arabidopsis heterotrimeric G-protein subunits in modulating cell division in roots. Plant Physiol 141(3):887–897. doi:10.1104/pp.106.079202
Chen Y, Ji F, Xie H, Liang J, Zhang J (2006b) The regulator of G-protein signaling proteins involved in sugar and abscisic acid signaling in Arabidopsis seed germination. Plant Physiol 140(1):302–310. doi:10.1104/pp.105.069872
Colucci G, Apone F, Alyeshmerni N, Chalmers D, Chrispeels MJ (2002) GCR1, the putative Arabidopsis G protein-coupled receptor gene is cell cycle-regulated, and its overexpression abolishes seed dormancy and shortens time to flowering. Proc Natl Acad Sci USA 99(7):4736–4741
Devlin PF, Kay SA (2000) Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity. Plant Cell 12(12):2499–2510
Ding L, Pandey S, Assmann SM (2008) Arabidopsis extra-large G proteins (XLGs) regulate root morphogenesis. Plant J 53(2):248–263. doi:10.1111/j.1365-313X.2007.03335.x
Fankhauser C (2001) The phytochromes, a family of red/far-red absorbing photoreceptors. J Biol Chem 276(15):11453–11456. doi:10.1074/jbc.R100006200
Folta KM, Spalding EP (2001) Opposing roles of phytochrome A and phytochrome B in early cryptochrome-mediated growth inhibition. Plant J 28(3):333–340
Folta KM, Pontin MA, Karlin-Neumann G, Bottini R, Spalding EP (2003) Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light. Plant J 36(2):203–214
Goldsmith P, Gierschik P, Milligan G, Unson CG, Vinitsky R, Malech HL, Spiegel AM (1987) Antibodies directed against synthetic peptides distinguish between GTP-binding proteins in neutrophil and brain. J Biol Chem 262(30):14683–14688
Guo H, Yang H, Mockler TC, Lin C (1998) Regulation of flowering time by Arabidopsis photoreceptors. Science 279(5355):1360–1363
Jiao Y, Yang H, Ma L, Sun N, Yu H, Liu T, Gao Y, Gu H, Chen Z, Wada M, Gerstein M, Zhao H, Qu LJ, Deng XW (2003) A genome-wide analysis of blue-light regulation of Arabidopsis transcription factor gene expression during seedling development. Plant Physiol 133(4):1480–1493. doi:10.1104/pp.103.029439
Johnston CA, Taylor JP, Gao Y, Kimple AJ, Grigston JC, Chen JG, Siderovski DP, Jones AM, Willard FS (2007) GTPase acceleration as the rate-limiting step in Arabidopsis G protein-coupled sugar signaling. Proc Natl Acad Sci USA 104(44):17317–17322. doi:10.1073/pnas.0704751104
Jones AM, Ecker JR, Chen J-G (2003) A reevaluation of the role of the heterotrimeric G protein in coupling light responses in Arabidopsis. Plant Physiol 131(4):1623–1627. doi:10.1104/pp.102.017624
Kang CY, Lian HL, Wang FF, Huang JR, Yang HQ (2009) Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. Plant Cell 21(9):2624–2641. doi:10.1105/tpc.109.069765
Koornneef M, Rolf E, Spruit CJP (1980) Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana. Heynh Z Pflanzenphysiol 100:147–160
Koornneef M, Hanhart CJ, van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229(1):57–66
Lee YR, Assmann SM (1999) Arabidopsis thaliana ‘extra-large GTP-binding protein’ (AtXLG1): a new class of G-protein. Plant Mol Biol 40(1):55–64
Lin C (2002) Blue light receptors and signal transduction. Plant Cell 14(Suppl):S207–S225
Liu B, Zuo Z, Liu H, Liu X, Lin C (2011a) Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes Dev 25(10):1029–1034
Liu H, Liu B, Zhao C, Pepper M, Lin C (2011b) The action mechanisms of plant cryptochromes. Trends Plant Sci 16(12):684–691
Logemann J, Schell J, Willmitzer L (1987) Improved method for the isolation of RNA from plant tissues. Anal Biochem 163(1):16–20. doi:0003-2697(87)90086-8
Mancinelli AL, Rossi F, Moroni A (1991) Cryptochrome, phytochrome, and anthocyanin production. Plant Physiol 96(4):1079–1085
Mao J, Zhang YC, Sang Y, Li QH, Yang HQ (2005) From the cover: a role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci USA 102(34):12270–12275
Marotti LA Jr, Newitt R, Wang Y, Aebersold R, Dohlman HG (2002) Direct identification of a G protein ubiquitination site by mass spectrometry. Biochemistry 41(16):5067–5074
Moshkov IE, Mur LA, Novikova GV, Smith AR, Hall MA (2003) Ethylene regulates monomeric GTP-binding protein gene expression and activity in Arabidopsis. Plant Physiol 131(4):1705–1717. doi:10.1104/pp.014035
Muschietti JP, Martinetto HE, Coso OA, Farber MD, Torres HN, Flawia MM (1993) G-protein from Medicago sativa: functional association to photoreceptors. Biochem J 291(Pt 2):383–388
Nagatani A, Reed JW, Chory J (1993) Isolation and initial characterization of Arabidopsis mutants that are deficient in phytochrome A. Plant Physiol 102(1):269–277. doi:102/1/269
Neuhaus G, Bowler C, Kern R, Chua NH (1993) Calcium/calmodulin-dependent and -independent phytochrome signal transduction pathways. Cell 73(5):937–952. doi:0092-8674(93)90272-R
Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136(1):136–148. doi:10.1016/j.cell.2008.12.026
Raz V, Ecker JR (1999) Regulation of differential growth in the apical hook of Arabidopsis. Development 126(16):3661–3668
Reed JW, Nagpal P, Poole DS, Furuya M, Chory J (1993) Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5(2):147–157. doi:10.1105/tpc.5.2.147
Romero LC, Sommer D, Gotor C, Song PS (1991) G-proteins in etiolated Avena seedlings. Possible phytochrome regulation. FEBS Lett 282(2):341–346. doi:0014-5793(91)80509-2]
Sellaro R, Crepy M, Trupkin SA, Karayekov E, Buchovsky AS, Rossi C, Casal JJ (2010) Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis. Plant Physiol 154(1):401–409. doi:10.1104/pp.110.160820
Temple BR, Jones AM (2007) The plant heterotrimeric G-protein complex. Annu Rev Plant Biol 58:249–266. doi:10.1146/annurev.arplant.58.032806.103827
Ullah H, Chen JG, Young JC, Im KH, Sussman MR, Jones AM (2001) Modulation of cell proliferation by heterotrimeric G protein in Arabidopsis. Science 292(5524):2066–2069. doi:10.1126/science.1059040
Ullah H, Chen JG, Temple B, Boyes DC, Alonso JM, Davis KR, Ecker JR, Jones AM (2003) The beta-subunit of the Arabidopsis G protein negatively regulates auxin-induced cell division and affects multiple developmental processes. Plant Cell 15(2):393–409
Wang H (2005) Signaling mechanisms of higher plant photoreceptors: a structure-function perspective. Curr Top Dev Biol 68:227–261
Wang H, Ma LG, Li JM, Zhao HY, Deng XW (2001) Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294(5540):154–158
Wang Y, Marotti LA Jr, Lee MJ, Dohlman HG (2005) Differential regulation of G protein alpha subunit trafficking by mono- and polyubiquitination. J Biol Chem 280(1):284–291
Wang HX, Weerasinghe RR, Perdue TD, Cakmakci NG, Taylor JP, Marzluff WF, Jones AM (2006) A Golgi-localized hexose transporter is involved in heterotrimeric G protein-mediated early development in Arabidopsis. Mol Biol Cell 17(10):4257–4269. doi:10.1091/mbc.E06-01-0046
Warpeha KM, Hamm HE, Rasenick MM, Kaufman LS (1991) A blue-light-activated GTP-binding protein in the plasma membranes of etiolated peas. Proc Natl Acad Sci USA 88(20):8925–8929
Warpeha KM, Lateef SS, Lapik Y, Anderson M, Lee BS, Kaufman LS (2006) G-protein-coupled receptor 1, G-protein Galpha-subunit 1, and prephenate dehydratase 1 are required for blue light-induced production of phenylalanine in etiolated Arabidopsis. Plant Physiol 140(3):844–855. doi:10.1104/pp.105.071282
Warpeha KM, Upadhyay S, Yeh J, Adamiak J, Hawkins SI, Lapik YR, Anderson MB, Kaufman LS (2007) The GCR1, GPA1, PRN1, NF-Y signal chain mediates both blue light and abscisic acid responses in Arabidopsis. Plant Physiol 143(4):1590–1600. doi:10.1104/pp.106.089904
Wei Q, Zhou W, Hu G, Wei J, Yang H, Huang J (2008) Heterotrimeric G-protein is involved in phytochrome A-mediated cell death of Arabidopsis hypocotyls. Cell Res 18(9):949–960. doi:10.1038/cr.2008.271
Wu L, Yang HQ (2010) CRYPTOCHROME 1 is implicated in promoting R protein-mediated plant resistance to Pseudomonas syringae in Arabidopsis. Mol Plant 3(3):539–548
Yang HQ, Tang RH, Cashmore AR (2001) The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell 13(12):2573–2587
Yang YJ, Zuo ZC, Zhao XY, Li X, Klejnot J, Li Y, Chen P, Liang SP, Yu XH, Liu XM, Lin CT (2008) Blue-light-independent activity of Arabidopsis cryptochromes in the regulation of steady-state levels of protein and mRNA expression. Mol Plant 1(1):167–177. doi:10.1093/mp/ssm018
Yanovsky MJ, Kay SA (2001) Signaling networks in the plant circadian system. Curr Opin Plant Biol 4(5):429–435
Acknowledgments
This work was financially supported by grants from CONICET (PIP 037) and FONCyT, Fondo Nacional de Ciencia y Tecnica (PICT 2010 #1821) to M.A.M; and by FONCyT (PICT 2007 # 01976) to J.P.M; and by (PICT 2006 # 1913) and UBA G044 to J.J.C; by grants from the NIGMS (R01GM065989), DOE (DE-FG02-05er15671), and NSF National Science Fundation (MCB-0723515 and MCB-0718202) to A.M.J.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Fox, A.R., Soto, G.C., Jones, A.M. et al. cry1 and GPA1 signaling genetically interact in hook opening and anthocyanin synthesis in Arabidopsis. Plant Mol Biol 80, 315–324 (2012). https://doi.org/10.1007/s11103-012-9950-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11103-012-9950-x