Skip to main content
Log in

cry1 and GPA1 signaling genetically interact in hook opening and anthocyanin synthesis in Arabidopsis

Plant Molecular Biology Aims and scope Submit manuscript

Abstract

While studying blue light-independent effects of cryptochrome 1 (cry1) photoreceptor, we observed premature opening of the hook in cry1 mutants grown in complete darkness, a phenotype that resembles the one described for the heterotrimeric G-protein α subunit (GPA1) null mutant gpa1. Both cry1 and gpa1 also showed reduced accumulation of anthocyanin under blue light. These convergent gpa1 and cry1 phenotypes required the presence of sucrose in the growth media and were not additive in the cry1 gpa1 double mutant, suggesting context-dependent signaling convergence between cry1 and GPA1 signaling pathways. Both, gpa1 and cry1 mutants showed reduced GTP-binding activity. The cry1 mutant showed wild-type levels of GPA1 mRNA or GPA1 protein. However, an anti-transducin antibody (AS/7) typically used for plant Gα proteins, recognized a 54 kDa band in the wild type but not in gpa1 and cry1 mutants. We propose a model where cry1-mediated post-translational modification of GPA1 alters its GTP-binding activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

cry:

Cryptochrome

GPA1:

Heterotrimeric G-protein α subunit of Arabidopsis thaliana

RL:

Red light

FRL:

Far red light

BL:

Blue light

phy:

Phytochrome

WT:

Wild type

MS:

Murashige and Skoog basal medium

References

  • Abramoff M, Magelhaes P, Ram S (2004) Image processing with imageJ. Biophotonics Int 11:36–42

    Google Scholar 

  • Ahmad M, Cashmore AR (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366(6451):162–166

    Article  PubMed  CAS  Google Scholar 

  • Ahmad M, Lin C, Cashmore AR (1995) Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. Plant J 8(5):653–658

    Article  PubMed  CAS  Google Scholar 

  • Assmann SM (2002) Heterotrimeric and unconventional GTP binding proteins in plant cell signaling. Plant Cell 14(Suppl):S355–S373

    PubMed  CAS  Google Scholar 

  • Bischoff F, Molendijk A, Rajendrakumar CS, Palme K (1999) GTP-binding proteins in plants. Cell Mol Life Sci 55(2):233–256

    Article  PubMed  CAS  Google Scholar 

  • Boccalandro HE, Giordano CV, Ploschuk EL, Piccoli PN, Bottini R, Casal JJ (2011) Phototropins but not cryptochromes mediate the blue light-specific promotion of stomatal conductance, while both enhance photosynthesis and transpiration under full sunlight. Plant Physiol 158(3):1475–1484. doi:10.1104/pp.111.187237

    Google Scholar 

  • Borochov-Neori H, Gindin E, Borochov A (1997) Response of melon plants to salt: 3. Modulation of GTP-binding proteins in root membranes. J Plant Physiol 150(3):355–361

    Article  CAS  Google Scholar 

  • Botto JF, Alonso-Blanco C, Garzaron I, Sanchez RA, Casal JJ (2003) The Cape Verde Islands allele of cryptochrome 2 enhances cotyledon unfolding in the absence of blue light in Arabidopsis. Plant Physiol 133(4):1547–1556. doi:10.1104/pp.103.029546

    Article  PubMed  CAS  Google Scholar 

  • Botto JF, Ibarra S, Jones AM (2009) The heterotrimeric G-protein complex modulates light sensitivity in Arabidopsis thaliana seed germination. Photochem Photobiol 85(4):949–954. doi:10.1111/j.1751-1097.2008.00505.x

    Article  PubMed  CAS  Google Scholar 

  • Bouly JP, Schleicher E, Dionisio-Sese M, Vandenbussche F, Van Der Straeten D, Bakrim N, Meier S, Batschauer A, Galland P, Bittl R, Ahmad M (2007) Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. J Biol Chem 282(13):9383–9391. doi:10.1074/jbc.M609842200

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Yamagata H, Neuhaus G, Chua NH (1994) Phytochrome signal transduction pathways are regulated by reciprocal control mechanisms. Genes Dev 8(18):2188–2202

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantiation of micrograms quantities of protein utilizing the principle of protein-dye. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brautigam CA, Smith BS, Ma Z, Palnitkar M, Tomchick DR, Machius M, Deisenhofer J (2004) Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana. Proc Natl Acad Sci USA 101(33):12142–12147

    Article  PubMed  CAS  Google Scholar 

  • Bruggemann E, Handwerger K, Essex C, Storz G (1996) Analysis of fast neutron-generated mutants at the Arabidopsis thaliana HY4 locus. Plant J 10(4):755–760

    Article  PubMed  CAS  Google Scholar 

  • Burney S, Hoang N, Caruso M, Dudkin EA, Ahmad M, Bouly JP (2009) Conformational change induced by ATP binding correlates with enhanced biological function of Arabidopsis cryptochrome. FEBS Lett 583(9):1427–1433. doi:10.1016/j.febslet.2009.03.040

    Article  PubMed  CAS  Google Scholar 

  • Canamero RC, Bakrim N, Bouly JP, Garay A, Dudkin EE, Habricot Y, Ahmad M (2006) Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana. Planta 224(5):995–1003

    Article  PubMed  CAS  Google Scholar 

  • Cashmore AR, Jarillo JA, Wu YJ, Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284(5415):760–765

    Article  PubMed  CAS  Google Scholar 

  • Chen JG, Willard FS, Huang J, Liang J, Chasse SA, Jones AM, Siderovski DP (2003) A seven-transmembrane RGS protein that modulates plant cell proliferation. Science 301(5640):1728–1731. doi:10.1126/science.1087790

    Article  PubMed  CAS  Google Scholar 

  • Chen JG, Gao Y, Jones AM (2006a) Differential roles of Arabidopsis heterotrimeric G-protein subunits in modulating cell division in roots. Plant Physiol 141(3):887–897. doi:10.1104/pp.106.079202

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Ji F, Xie H, Liang J, Zhang J (2006b) The regulator of G-protein signaling proteins involved in sugar and abscisic acid signaling in Arabidopsis seed germination. Plant Physiol 140(1):302–310. doi:10.1104/pp.105.069872

    Article  PubMed  CAS  Google Scholar 

  • Colucci G, Apone F, Alyeshmerni N, Chalmers D, Chrispeels MJ (2002) GCR1, the putative Arabidopsis G protein-coupled receptor gene is cell cycle-regulated, and its overexpression abolishes seed dormancy and shortens time to flowering. Proc Natl Acad Sci USA 99(7):4736–4741

    Article  PubMed  CAS  Google Scholar 

  • Devlin PF, Kay SA (2000) Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity. Plant Cell 12(12):2499–2510

    PubMed  CAS  Google Scholar 

  • Ding L, Pandey S, Assmann SM (2008) Arabidopsis extra-large G proteins (XLGs) regulate root morphogenesis. Plant J 53(2):248–263. doi:10.1111/j.1365-313X.2007.03335.x

    Article  PubMed  CAS  Google Scholar 

  • Fankhauser C (2001) The phytochromes, a family of red/far-red absorbing photoreceptors. J Biol Chem 276(15):11453–11456. doi:10.1074/jbc.R100006200

    Article  PubMed  CAS  Google Scholar 

  • Folta KM, Spalding EP (2001) Opposing roles of phytochrome A and phytochrome B in early cryptochrome-mediated growth inhibition. Plant J 28(3):333–340

    Article  PubMed  CAS  Google Scholar 

  • Folta KM, Pontin MA, Karlin-Neumann G, Bottini R, Spalding EP (2003) Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light. Plant J 36(2):203–214

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith P, Gierschik P, Milligan G, Unson CG, Vinitsky R, Malech HL, Spiegel AM (1987) Antibodies directed against synthetic peptides distinguish between GTP-binding proteins in neutrophil and brain. J Biol Chem 262(30):14683–14688

    PubMed  CAS  Google Scholar 

  • Guo H, Yang H, Mockler TC, Lin C (1998) Regulation of flowering time by Arabidopsis photoreceptors. Science 279(5355):1360–1363

    Article  PubMed  CAS  Google Scholar 

  • Jiao Y, Yang H, Ma L, Sun N, Yu H, Liu T, Gao Y, Gu H, Chen Z, Wada M, Gerstein M, Zhao H, Qu LJ, Deng XW (2003) A genome-wide analysis of blue-light regulation of Arabidopsis transcription factor gene expression during seedling development. Plant Physiol 133(4):1480–1493. doi:10.1104/pp.103.029439

    Article  PubMed  CAS  Google Scholar 

  • Johnston CA, Taylor JP, Gao Y, Kimple AJ, Grigston JC, Chen JG, Siderovski DP, Jones AM, Willard FS (2007) GTPase acceleration as the rate-limiting step in Arabidopsis G protein-coupled sugar signaling. Proc Natl Acad Sci USA 104(44):17317–17322. doi:10.1073/pnas.0704751104

    Article  PubMed  CAS  Google Scholar 

  • Jones AM, Ecker JR, Chen J-G (2003) A reevaluation of the role of the heterotrimeric G protein in coupling light responses in Arabidopsis. Plant Physiol 131(4):1623–1627. doi:10.1104/pp.102.017624

    Article  PubMed  CAS  Google Scholar 

  • Kang CY, Lian HL, Wang FF, Huang JR, Yang HQ (2009) Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. Plant Cell 21(9):2624–2641. doi:10.1105/tpc.109.069765

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Rolf E, Spruit CJP (1980) Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana. Heynh Z Pflanzenphysiol 100:147–160

    Google Scholar 

  • Koornneef M, Hanhart CJ, van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229(1):57–66

    Article  PubMed  CAS  Google Scholar 

  • Lee YR, Assmann SM (1999) Arabidopsis thaliana ‘extra-large GTP-binding protein’ (AtXLG1): a new class of G-protein. Plant Mol Biol 40(1):55–64

    Article  PubMed  CAS  Google Scholar 

  • Lin C (2002) Blue light receptors and signal transduction. Plant Cell 14(Suppl):S207–S225

    PubMed  CAS  Google Scholar 

  • Liu B, Zuo Z, Liu H, Liu X, Lin C (2011a) Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes Dev 25(10):1029–1034

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Liu B, Zhao C, Pepper M, Lin C (2011b) The action mechanisms of plant cryptochromes. Trends Plant Sci 16(12):684–691

    Article  PubMed  CAS  Google Scholar 

  • Logemann J, Schell J, Willmitzer L (1987) Improved method for the isolation of RNA from plant tissues. Anal Biochem 163(1):16–20. doi:0003-2697(87)90086-8

    Article  PubMed  CAS  Google Scholar 

  • Mancinelli AL, Rossi F, Moroni A (1991) Cryptochrome, phytochrome, and anthocyanin production. Plant Physiol 96(4):1079–1085

    Article  PubMed  CAS  Google Scholar 

  • Mao J, Zhang YC, Sang Y, Li QH, Yang HQ (2005) From the cover: a role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci USA 102(34):12270–12275

    Article  PubMed  CAS  Google Scholar 

  • Marotti LA Jr, Newitt R, Wang Y, Aebersold R, Dohlman HG (2002) Direct identification of a G protein ubiquitination site by mass spectrometry. Biochemistry 41(16):5067–5074

    Article  PubMed  CAS  Google Scholar 

  • Moshkov IE, Mur LA, Novikova GV, Smith AR, Hall MA (2003) Ethylene regulates monomeric GTP-binding protein gene expression and activity in Arabidopsis. Plant Physiol 131(4):1705–1717. doi:10.1104/pp.014035

    Article  PubMed  CAS  Google Scholar 

  • Muschietti JP, Martinetto HE, Coso OA, Farber MD, Torres HN, Flawia MM (1993) G-protein from Medicago sativa: functional association to photoreceptors. Biochem J 291(Pt 2):383–388

    PubMed  CAS  Google Scholar 

  • Nagatani A, Reed JW, Chory J (1993) Isolation and initial characterization of Arabidopsis mutants that are deficient in phytochrome A. Plant Physiol 102(1):269–277. doi:102/1/269

    PubMed  CAS  Google Scholar 

  • Neuhaus G, Bowler C, Kern R, Chua NH (1993) Calcium/calmodulin-dependent and -independent phytochrome signal transduction pathways. Cell 73(5):937–952. doi:0092-8674(93)90272-R

    Article  PubMed  CAS  Google Scholar 

  • Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136(1):136–148. doi:10.1016/j.cell.2008.12.026

    Article  PubMed  CAS  Google Scholar 

  • Raz V, Ecker JR (1999) Regulation of differential growth in the apical hook of Arabidopsis. Development 126(16):3661–3668

    PubMed  CAS  Google Scholar 

  • Reed JW, Nagpal P, Poole DS, Furuya M, Chory J (1993) Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5(2):147–157. doi:10.1105/tpc.5.2.147

    PubMed  CAS  Google Scholar 

  • Romero LC, Sommer D, Gotor C, Song PS (1991) G-proteins in etiolated Avena seedlings. Possible phytochrome regulation. FEBS Lett 282(2):341–346. doi:0014-5793(91)80509-2]

    Article  PubMed  CAS  Google Scholar 

  • Sellaro R, Crepy M, Trupkin SA, Karayekov E, Buchovsky AS, Rossi C, Casal JJ (2010) Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis. Plant Physiol 154(1):401–409. doi:10.1104/pp.110.160820

    Article  PubMed  CAS  Google Scholar 

  • Temple BR, Jones AM (2007) The plant heterotrimeric G-protein complex. Annu Rev Plant Biol 58:249–266. doi:10.1146/annurev.arplant.58.032806.103827

    Article  PubMed  CAS  Google Scholar 

  • Ullah H, Chen JG, Young JC, Im KH, Sussman MR, Jones AM (2001) Modulation of cell proliferation by heterotrimeric G protein in Arabidopsis. Science 292(5524):2066–2069. doi:10.1126/science.1059040

    Article  PubMed  CAS  Google Scholar 

  • Ullah H, Chen JG, Temple B, Boyes DC, Alonso JM, Davis KR, Ecker JR, Jones AM (2003) The beta-subunit of the Arabidopsis G protein negatively regulates auxin-induced cell division and affects multiple developmental processes. Plant Cell 15(2):393–409

    Article  PubMed  CAS  Google Scholar 

  • Wang H (2005) Signaling mechanisms of higher plant photoreceptors: a structure-function perspective. Curr Top Dev Biol 68:227–261

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Ma LG, Li JM, Zhao HY, Deng XW (2001) Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294(5540):154–158

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Marotti LA Jr, Lee MJ, Dohlman HG (2005) Differential regulation of G protein alpha subunit trafficking by mono- and polyubiquitination. J Biol Chem 280(1):284–291

    PubMed  CAS  Google Scholar 

  • Wang HX, Weerasinghe RR, Perdue TD, Cakmakci NG, Taylor JP, Marzluff WF, Jones AM (2006) A Golgi-localized hexose transporter is involved in heterotrimeric G protein-mediated early development in Arabidopsis. Mol Biol Cell 17(10):4257–4269. doi:10.1091/mbc.E06-01-0046

    Article  PubMed  CAS  Google Scholar 

  • Warpeha KM, Hamm HE, Rasenick MM, Kaufman LS (1991) A blue-light-activated GTP-binding protein in the plasma membranes of etiolated peas. Proc Natl Acad Sci USA 88(20):8925–8929

    Article  PubMed  CAS  Google Scholar 

  • Warpeha KM, Lateef SS, Lapik Y, Anderson M, Lee BS, Kaufman LS (2006) G-protein-coupled receptor 1, G-protein Galpha-subunit 1, and prephenate dehydratase 1 are required for blue light-induced production of phenylalanine in etiolated Arabidopsis. Plant Physiol 140(3):844–855. doi:10.1104/pp.105.071282

    Article  PubMed  CAS  Google Scholar 

  • Warpeha KM, Upadhyay S, Yeh J, Adamiak J, Hawkins SI, Lapik YR, Anderson MB, Kaufman LS (2007) The GCR1, GPA1, PRN1, NF-Y signal chain mediates both blue light and abscisic acid responses in Arabidopsis. Plant Physiol 143(4):1590–1600. doi:10.1104/pp.106.089904

    Article  PubMed  CAS  Google Scholar 

  • Wei Q, Zhou W, Hu G, Wei J, Yang H, Huang J (2008) Heterotrimeric G-protein is involved in phytochrome A-mediated cell death of Arabidopsis hypocotyls. Cell Res 18(9):949–960. doi:10.1038/cr.2008.271

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Yang HQ (2010) CRYPTOCHROME 1 is implicated in promoting R protein-mediated plant resistance to Pseudomonas syringae in Arabidopsis. Mol Plant 3(3):539–548

    Article  PubMed  CAS  Google Scholar 

  • Yang HQ, Tang RH, Cashmore AR (2001) The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell 13(12):2573–2587

    PubMed  CAS  Google Scholar 

  • Yang YJ, Zuo ZC, Zhao XY, Li X, Klejnot J, Li Y, Chen P, Liang SP, Yu XH, Liu XM, Lin CT (2008) Blue-light-independent activity of Arabidopsis cryptochromes in the regulation of steady-state levels of protein and mRNA expression. Mol Plant 1(1):167–177. doi:10.1093/mp/ssm018

    Article  PubMed  CAS  Google Scholar 

  • Yanovsky MJ, Kay SA (2001) Signaling networks in the plant circadian system. Curr Opin Plant Biol 4(5):429–435

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants from CONICET (PIP 037) and FONCyT, Fondo Nacional de Ciencia y Tecnica (PICT 2010 #1821) to M.A.M; and by FONCyT (PICT 2007 # 01976) to J.P.M; and by (PICT 2006 # 1913) and UBA G044 to J.J.C; by grants from the NIGMS (R01GM065989), DOE (DE-FG02-05er15671), and NSF National Science Fundation (MCB-0723515 and MCB-0718202) to A.M.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María A. Mazzella.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, A.R., Soto, G.C., Jones, A.M. et al. cry1 and GPA1 signaling genetically interact in hook opening and anthocyanin synthesis in Arabidopsis. Plant Mol Biol 80, 315–324 (2012). https://doi.org/10.1007/s11103-012-9950-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-012-9950-x

Keywords

Navigation