Plant Molecular Biology

, Volume 80, Issue 3, pp 255–272 | Cite as

Over-expression of a cytosolic isoform of the HbCuZnSOD gene in Hevea brasiliensis changes its response to a water deficit

  • J. Leclercq
  • F. Martin
  • C. Sanier
  • A. Clément-Vidal
  • D. Fabre
  • G. Oliver
  • L. Lardet
  • A. Ayar
  • M. Peyramard
  • P. Montoro
Article

Abstract

Hevea brasiliensis is the main commercial source of natural rubber. Reactive oxygen species (ROS) scavenging systems are involved in various biotic and abiotic stresses. Genetic engineering was undertaken to study the strengthening of plant defences by antioxidants. To that end, Hevea transgenic plant lines over-expressing a Hevea brasiliensis cytosolic HbCuZnSOD gene were successfully established and regenerated. Over-expression of the HbCuZnSOD gene was not clearly related to an increase in SOD activity in plant leaves. The impact of HbCuZnSOD gene over-expression in somatic embryogenesis and in plant development are presented and discussed. The water deficit tolerance of two HbCuZnSOD over-expressing lines was evaluated. The physiological parameters of transgenic plantlets subjected to a water deficit suggested that plants from line TS4T8An displayed lower stomatal conductance and a higher proline content. Over-expression of the HbCuZnSOD gene and activation of all ROS-scavenging enzymes also suggested that protection against ROS was more efficient in the TS4T8An transgenic line.

Keywords

Abiotic stress Dehydration Development Drought Hevea brasiliensis Genetic transformation Oxidative stress Plant regeneration Somatic embryogenesis 

Supplementary material

11103_2012_9942_MOESM1_ESM.docx (11 kb)
Supplementary material 1 (DOCX 10 kb)
11103_2012_9942_MOESM2_ESM.docx (12 kb)
Supplementary material 2 (DOCX 11 kb)
11103_2012_9942_MOESM3_ESM.docx (16 kb)
Supplementary material 3 (DOCX 15 kb)
11103_2012_9942_MOESM4_ESM.docx (13 kb)
Supplementary material 4 (DOCX 12 kb)
11103_2012_9942_MOESM5_ESM.docx (13 kb)
Supplementary material 5 (DOCX 12 kb)
11103_2012_9942_MOESM6_ESM.docx (13 kb)
Supplementary material 6 (DOCX 13 kb)

References:

  1. Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53(372):1331–1341PubMedCrossRefGoogle Scholar
  2. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. doi:10.1146/annurev.arplant.55.031903.141701 PubMedCrossRefGoogle Scholar
  3. Beauclair L, Yu A, Bouche N (2010) microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. Plant J 62(3):454–462. doi:10.1111/j.1365-313X.2010.04162.x PubMedCrossRefGoogle Scholar
  4. Belmonte MF, Stasolla C (2007) Applications of DL-buthionine-[S, R]-sulfoximine deplete cellular glutathione and improve white spruce (Picea glauca) somatic embryo development. Plant Cell Rep 26(4):517–523. doi:10.1007/s00299-006-0267-6 PubMedCrossRefGoogle Scholar
  5. Benson E (2000) In vitro plant recalcitrance. Do free radicals have a role in plant tissue culture recalcitrance. Vitro Cell Dev BiolPlant 36:163–170CrossRefGoogle Scholar
  6. Blanc G, Baptiste C, Oliver G, Martin F, Montoro P (2006) Efficient Agrobacterium tumefaciens-mediated transformation of embryogenic calli and regeneration of Hevea brasiliensis Mull Arg. plants. Plant Cell Rep 24(12):724–733. doi:10.1007/s00299-005-0023-3 PubMedCrossRefGoogle Scholar
  7. Carron M-P, Etienne H, Lardet L, Campagna S, Perrin Y, Leconte A, Chaine C (1995) Somatic embryogenesis in rubber (Hevea brasiliensis Müll. Arg.). In: Jain S Gupta P, Newton R (eds) Somatic embryogenesis in woody plants. Kluwer Academic Publishers, Dordrecht, pp 117–136Google Scholar
  8. Carron MP, Lardet L, Granet F, Julien JL, Teerawatanasuk K, Kelly J, Dea BG, Leconte A, Montoro P (2009) Field trials network emphasizes the improvement of growth and yield through micropopagation in rubber tree (Hevea brasiliensis, Muëll.-Arg). Acta Horticulturae 812:485–492Google Scholar
  9. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103(4):551–560. doi:10.1093/aob/mcn125 PubMedCrossRefGoogle Scholar
  10. Chen S, Peng S, Huang G, Wu K, Fu X, Chen Z (2003) Association of decreased expression of a Myb transcription factor with the TPD (tapping panel dryness) syndrome in Hevea brasiliensis. Plant Mol Biol 51(1):51–58PubMedCrossRefGoogle Scholar
  11. Chrestin H (1989) Biochemical aspects of bark dryness induced by overstimulation of rubber trees with Ethrel. In: d’Auzac J, Jacob JL, Chrestin H (eds) Physiology of rubber tree latex. CRC Press, Boca Raton, FL, pp 432–439Google Scholar
  12. Chrestin H, Bangrantz J, d’Auzac J, Jacob JL (1984) Role of the lutoidic tonoplast in the senescence and degeneration of the laticifer of Hevea brasiliensis. Zeitschrift-für-Pflanzenphysiologie 114(3):261–268Google Scholar
  13. Christen D, Schonmann S, Jermini M, Strasser RJ, Defago G, Wagschal I (2007) Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. Phytopathologia Mediterranea 46(1):112–113Google Scholar
  14. Compagnon P (1986) Le caoutchouc naturel. Techniques agricoles et productions tropicales. Maisonneuve, G.P., ParisGoogle Scholar
  15. De Faÿ E, Jacob JL (1989) Symptomatology, histoligical and cytological aspects. In: d’Auzac J. Jacob JL, Chrestin H (eds) Physiology of rubber tree latex. CRC Press, Boca Raton, FL, pp 408–428Google Scholar
  16. Dian K, Sangare A, Diopoh JK (1995) Evidence for specific variation of protein pattern during tapping panel dryness condition development in Hevea brasiliensis. Plant Sci 105:207–216CrossRefGoogle Scholar
  17. Duan C, Rio M, Leclercq J, Bonnot F, Oliver G, Montoro P (2010) Gene expression pattern in response to wounding, methyl jasmonate and ethylene in bark of Hevea brasiliensis. Tree Physiol 30(10):1349–1359Google Scholar
  18. Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot. doi:10.1093/jxb/erq432 PubMedGoogle Scholar
  19. Ganesan M, Jayabalan N (2004) Evaluation of haemoglobin (erythrogen): for improved somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L. cv. SVPR 2). Plant Cell Rep 23(4):181–187. doi:10.1007/s00299-004-0822-y
  20. Gao X, Ren Z, Zhao Y, Zhang H (2003) Overexpression of SOD2 increases salt tolerance of Arabidopsis. Plant Physiol 133(4):1873–1881. doi:10.1104/pp.103.026062 PubMedCrossRefGoogle Scholar
  21. Gébelin V, Argout X, Engchuan W, Pitollat B, Duan C, Montoro P, Leclercq J (2012) Identification of novel microRNAs in Hevea brasiliensis and computational prediction of their targets. BMC Plant Biol 12(1):18PubMedCrossRefGoogle Scholar
  22. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930. doi:10.1016/j.plaphy.2010.08.016 PubMedCrossRefGoogle Scholar
  23. Gohet E, Prévôt JC, Eschbach JM, Clément A, Jacob JL (1995) Hevea latex production: relationship with tree growth, influence of clonal origin and ethrel stimulation. In: Proceedings of the international rubber research and development board symposium on physiology and molecular aspects of breeding of hevea brasiliensis. Penang, Malaysia, pp 200–210Google Scholar
  24. Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90(4):1629–1633PubMedCrossRefGoogle Scholar
  25. Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994PubMedCrossRefGoogle Scholar
  26. Hare PD, Cress WA, Van Staden J (1999) Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. J Exp Bot 50:413–434Google Scholar
  27. Hong Z, Lakkineni K, Zhang Z, Verma DP (2000) Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122(4):1129–1136PubMedCrossRefGoogle Scholar
  28. Jacob JL (1989) Yield-limiting factors, latex physiological parameters, latex diagnosis and clonal typology. In: D’Auzac J, Jacob JL, Chrestin H (eds) Physiology of rubber tree latex. CRC Press, Boca Raton, FL, pp 345–381Google Scholar
  29. Jaspers P, Kangasjarvi J (2010) Reactive oxygen species in abiotic stress signaling. Physiol Plant 138(4):405–413. doi:10.1111/j.1399-3054.2009.01321.x PubMedCrossRefGoogle Scholar
  30. Jayashree R, Rekha K, Venkatachalam P, Uratsu SL, Dandekar AM, Kumari Jayasree P, Kala RG, Priya P, Sushma Kumari S, Sobha S, Ashokan MP, Sethuraj MR, Thulaseedharan A (2003) Genetic transformation and regeneration of rubber tree (Hevea brasiliensis Muell. Arg) transgenic plants with a constitutive version of an anti-oxidative stress superoxide dismutase gene. Plant Cell Rep 22(3):201–209. doi:10.1007/s00299-003-0666-x Google Scholar
  31. Joët T, Dubois V, Prevot J-C, Clement-Vidal A (2002) Both ascorbate peroxidase and glutathione peroxidase are active in removal of H2O2 from the cytosol of Hevea brasiliensis latex. J Rubber Res 5(4):226–243Google Scholar
  32. Labra M, Vannini C, Grassi F, Bracale M, Balsemin M, Basso B, Sala F (2004) Genomic stability in Arabidopsis thaliana transgenic plants obtained by floral dip. Theor Appl Genet 109(7):1512–1518. doi:10.1007/s00122-004-1773-y PubMedCrossRefGoogle Scholar
  33. Lacote R, Gabla O, Obouayeba S, Eschbach JM, Rivano F, Dian K, Gohet E (2010a) Long-term effect of ethylene stimulation on the yield of rubber trees is linked to latex cell biochemistry. Field Crop Res 115:94–98CrossRefGoogle Scholar
  34. Lacote R, Gabla O, Obouayeba S, Eschbach JM, Rivano F, Dian K, Gohet E (2010b) Long-term effect of ethylene stimulation on the yield of rubber trees is linked to latex cell biochemistry. Field Crop Res 115:94–98CrossRefGoogle Scholar
  35. Lardet L, Piombo G, Oriol F, Dechamp E, Carron M (1999) Relation between biochemical characteristics and conversion ability in Hevea brasiliensis zygotic and somatic embryos. Can J Bot 77:1168–1177Google Scholar
  36. Lardet L, Martin F, Dessailly F, Carron MP, Montoro P (2007) Effect of exogenous calcium on post-thaw growth recovery and subsequent plant regeneration of cryopreserved embryogenic calli of Hevea brasiliensis (Mull. Arg.). Plant Cell Rep 26(5):559–569. doi:10.1007/s00299-006-0278-3 PubMedCrossRefGoogle Scholar
  37. Lardet L, Dessailly F, Carron MP, Montoro P, Monteuuis O (2009) Influences of aging and cloning methods on the capacity for somatic embryogenesis of a mature Hevea brasiliensis genotype. Tree Physiol 29:291–298Google Scholar
  38. Leclercq J, Lardet L, Martin F, Chapuset T, Oliver G, Montoro P (2010) The green fluorescent protein as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation in Hevea brasiliensis (Mull. Arg). Plant Cell Rep 29(5):513–522. doi:10.1007/s00299-010-0840-x Google Scholar
  39. Li AH, Na BK, Ahn SK, Cho SH, Pak JH, Park YK, Kim TS (2010) Functional expression and characterization of a cytosolic copper/zinc-superoxide dismutase of Spirometra erinacei. Parasitol Res 106(3):627–635. doi:10.1007/s00436-009-1714-4 PubMedCrossRefGoogle Scholar
  40. Luo J, Yu F, Liu L, Wu CD, Mei XG (2001) Effect of dissolved oxygen on the suspension culture of Taxus chinensis. Sheng Wu Gong Cheng Xue Bao 17(2):215–217PubMedGoogle Scholar
  41. Luquet D, Clément-Vidal A, This D, Fabre D, Sonderegger N, Dingkuhn M (2008) Orchestration of transpiration, growth and carbohydrate dynamics in rice during a dry-down cycle. Funct Plant Biol 35:689–704Google Scholar
  42. Madon PS (2001) An improved photochemical method for the rapid spectrophotometric detection of superoxide dismutase. Redox Rep 6(2):123–127PubMedCrossRefGoogle Scholar
  43. Mai J, Herbette S, Vandame M, Cavaloc E, Julien JL, Ameglio T, Roeckel-Drevet P (2010) Contrasting strategies to cope with chilling stress among clones of a tropical tree, Hevea brasiliensis. Tree Physiol 30(11):1391–1402. doi:10.1093/treephys/tpq075 PubMedCrossRefGoogle Scholar
  44. McKersie BD, Bowley SR, Harjanto E, Leprince O (1996) Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 111(4):1177–1181PubMedGoogle Scholar
  45. Miao Z, Gaynor JJ (1993) Molecular cloning, characterization and expression of Mn-superoxide dismutase from the rubber tree (Hevea brasiliensis). Plant Mol Biol 23(2):267–277PubMedCrossRefGoogle Scholar
  46. Misra HP, Fridovich I (1977) Superoxide dismutase: “positive” spectrophotometric assays. Anal Biochem 79(1–2):553–560PubMedCrossRefGoogle Scholar
  47. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410PubMedCrossRefGoogle Scholar
  48. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498. doi:10.1016/j.tplants.2004.08.009 PubMedCrossRefGoogle Scholar
  49. Mlynarova L, Loonen A, Heldens J, Jansen RC, Keizer P, Stiekema WJ, Nap JP (1994) Reduced position effect in mature transgenic plants conferred by the chicken lysozyme matrix-associated region. Plant Cell 6(3):417–426PubMedGoogle Scholar
  50. Montoro P, Teinseree N, Rattana W, Kongsawadworakul P, Michaux-Ferrière N (2000) Effect on exogenous calcium on Agrobacterium tumefaciens-mediated gene transfer in Hevea brasiliensis (rubber tree) friable call. Plant Cell Rep 19:851–855Google Scholar
  51. Montoro P, Rattana W, Pujade-Renaud V, Michaux-Ferriere N, Monkolsook Y, Kanthapura R, Adunsadthapong S (2003) Production of Hevea brasiliensis transgenic embryogenic callus lines by Agrobacterium tumefaciens: roles of calcium. Plant Cell Rep 21(11):1095–1102. doi:10.1007/s00299-003-0632-7 PubMedCrossRefGoogle Scholar
  52. Montoro P, Lagier S, Baptiste C, Marteaux B, Pujade-Renaud V, Leclercq J, Alemanno L (2008) Expression of the HEV2.1 gene promoter in transgenic Hevea brasiliensis. Plant Cell Tiss Org Cult 94:55–63CrossRefGoogle Scholar
  53. Noctor G, Foyer CH (1998) ASCORBATE AND GLUTATHIONE: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279. doi:10.1146/annurev.arplant.49.1.249 PubMedCrossRefGoogle Scholar
  54. Oukarroum A, El Madidi S, Schansker G, Strasser RJ (2007) Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ Exp Bot 60:438–446CrossRefGoogle Scholar
  55. Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Feher A (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129(4):1807–1819. doi:10.1104/pp.000810 PubMedCrossRefGoogle Scholar
  56. Pitcher LH, Zilinskas BA (1996) Overexpression of copper/zinc superoxide dismutase in the cytosol of transgenic tobacco confers partial resistance to ozone-induced foliar necrosis. Plant Physiol 110(2):583–588PubMedGoogle Scholar
  57. Prashanth SR, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17(2):281–291. doi:10.1007/s11248-007-9099-6 PubMedCrossRefGoogle Scholar
  58. Putranto RA, Sanier C, Leclercq J, Duan C, Rio M, Jourdan C, Thaler P, Sabau X, Argout X, Montoro P (2012) Differential gene expression in different types of Hevea brasiliensis roots. Plant Sci 183:149–158PubMedCrossRefGoogle Scholar
  59. Rattana W, Teinseree N, Tadakittisarn S, Pujade-Renaud V, Monkolsook Y, Montoro P (2001) Characterization of factors involved in tissue growth recovery and stability of GUS activity in rubber tree (Hevea brasiliensis) friable calli transformed by Agrobacterium tumefaciens. Thai J Agric Sci 34:195–204Google Scholar
  60. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. In: A laboratory manual. Cold Spring Harbor Laboratory Press, New York, 2344 ppGoogle Scholar
  61. Sarkar RK, Panda D, Rao DN, Sharma SG (2004) Chlorophyll fluorescence parameters as indicators of submergence tolerance in rice. Crop Manag Physiol 29(1):66–68Google Scholar
  62. Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38(7):995–1014PubMedCrossRefGoogle Scholar
  63. Shin SY, Lee HS, Kwon SY, Kwon ST, Kwak SS (2005) Molecular characterization of a cDNA encoding copper/zinc superoxide dismutase from cultured cells of Manihot esculenta. Plant Physiol Biochem 43(1):55–60. doi:10.1016/j.plaphy.2004.12.005 PubMedCrossRefGoogle Scholar
  64. Sinclair TR and Ludlow MM (1986) Influence of soil water supply on the plant water balance of four tropical grain legumes. Aust J Plant Physiol 13:329–341Google Scholar
  65. Slooten L, Capiau K, Van Camp W, Van Montagu M, Sybesma C, Inze D (1995) Factors affecting the enhancement of oxidative stress tolerance in transgenic tobacco overexpressing manganese superoxide dismutase in the chloroplasts. Plant Physiol 107(3):737–750PubMedGoogle Scholar
  66. Smirnoff N (2003) Vitamin C booster. Nat Biotechnol 21(2):134–136PubMedCrossRefGoogle Scholar
  67. Sookmark U, Kongsawadworakul P, Narangajavana J, Chrestin H (2005) Studies on oxidative stress in rubber tree latex. In: James J, Krishnakumar R, Matthew VM (eds) Tapping panel dryness of rubber Trees, Kerala, India. Rubber Research Institute of India, Kottayam, pp 106–115Google Scholar
  68. Sookmark U, Pujade-Renaud V, Chrestin H, Lacote R, Naiyanetr C, Seguin M, Romruensukharom P, Narangajavana J (2002) Characterization of polypeptides accumulated in the latex cytosol of rubber trees affected by the tapping panel dryness syndrome. Plant Cell Physiol 43(11):1323–1333PubMedCrossRefGoogle Scholar
  69. Stasolla C (2010) Glutathione redox regulation of in vitro embryogenesis. Plant Physiol Biochem 48(5):319–327. doi:10.1016/j.plaphy.2009.10.007 PubMedCrossRefGoogle Scholar
  70. Strasser R, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescence transients in plants and cyanobacteria. Photochem Photobiol 61:32–42Google Scholar
  71. Strasser RJ, Srivasta A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterise and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanisms, regulation and adaptation. Taylor and Francis, London, pp 445–483Google Scholar
  72. Strauss AJ, Krüger GHJ, Strasser RJ, Van Heerden PDR (2006) Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environ Exp Bot 56:147–157CrossRefGoogle Scholar
  73. Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18(8):2051–2065. doi:10.1105/tpc.106.041673 PubMedCrossRefGoogle Scholar
  74. Székely G, Abraham E, Cseplo A, Rigo G, Zsigmond L, Csiszar J, Ayaydin F, Strizhov N, Jasik J, Schmelzer E, Koncz C, Szabados L (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53(1):11–28. doi:10.1111/j.1365-313X.2007.03318.x PubMedCrossRefGoogle Scholar
  75. Tepperman JM, Dunsmuir P (1990) Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity. Plant Mol Biol 14(4):501–511PubMedCrossRefGoogle Scholar
  76. Tsukagoshi H, Busch W, Benfey PN (2011) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143(4):606–616. doi:10.1016/j.cell.2010.10.020 CrossRefGoogle Scholar
  77. Van Heerden PDR, Swanepoel JW, Kruger GHJ (2007) Modulation of photosynthesis in two scrub species exhibiting C3-mode CO2 assimilation. Environ Exp Bot 61:124–136CrossRefGoogle Scholar
  78. Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250PubMedCrossRefGoogle Scholar
  79. Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20(7):759–771. doi:10.1101/gad.1410506 PubMedCrossRefGoogle Scholar
  80. Venkatachalam P, Thulaseedharan A, Raghothama K (2007) Identification of expression profiles of tapping panel dryness (TPD) associated genes from the latex of rubber tree (Hevea brasiliensis Muell. Arg.). Planta 226(2):499–515. doi:10.1007/s00425-007-0500-8 PubMedCrossRefGoogle Scholar
  81. Venkatachalam P, Thulaseedharan A, Raghothama K (2009) Molecular identification and characterization of a gene associated with the onset of tapping panel dryness (TPD) syndrome in rubber tree (Hevea brasiliensis Muell.) by mRNA differential display. Mol Biotechnol 41(1):42–52. doi:10.1007/s12033-008-9095-y Google Scholar
  82. Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162(4):465–472PubMedCrossRefGoogle Scholar
  83. Wang YC, Qu GZ, Li HY, Wu YJ, Wang C, Liu GF, Yang CP (2010) Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Mol Biol Rep 37(2):1119–1124. doi:10.1007/s11033-009-9884-9 PubMedCrossRefGoogle Scholar
  84. Xi WX, Xiao XZ (1988) Study on peroxidase isozyme and syperoxyde dismutase isozyme of TPD Hevea trees. Chin J Trop Crops Res 9:31–36Google Scholar
  85. Yang SQ, Fan XW (1995) Physiological response of PR107 to intensive tapping with stimulation at early exploitation stage. Chin J Trop Crops Res 16:17–28Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • J. Leclercq
    • 1
  • F. Martin
    • 1
  • C. Sanier
    • 1
  • A. Clément-Vidal
    • 1
  • D. Fabre
    • 1
  • G. Oliver
    • 1
  • L. Lardet
    • 1
  • A. Ayar
    • 1
  • M. Peyramard
    • 1
  • P. Montoro
    • 1
  1. 1.CIRAD, UMR AGAPMontpellierFrance

Personalised recommendations