Skip to main content
Log in

RAP2.6L overexpression delays waterlogging induced premature senescence by increasing stomatal closure more than antioxidant enzyme activity

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Waterlogging usually results from overuse or poor management of irrigation water and is a serious constraint due to its damaging effects. RAP2.6L (At5g13330) overexpression enhances plant resistance to jasmonic acid, salicylic acid, abscisic acid (ABA) and ethylene in Arabidopsis thaliana. However, it is not known whether RAP2.6L overexpression in vivo improves plant tolerance to waterlogging stress. In this study, the RAP2.6L transcript was induced by waterlogging or an ABA treatment, which was reduced after pretreatment with an ABA biosynthesis inhibitor tungstate. Water loss and membrane leakage were reduced in RAP2.6L overexpression plants under waterlogging stress. Time course analyses of ABA content and production of hydrogen peroxide (H2O2) showed that increased ABA precedes the increase of H2O2. It is also followed by a marked increase in the antioxidant enzyme activities. Increased ABA promoted stomatal closure and made leaves exhibit a delayed waterlogging induced premature senescence. Furthermore, RAP2.6L overexpression caused significant increases in the transcripts of antioxidant enzyme genes APX1 (ascorbate peroxidase 1) and FSD1 (Fe-superoxide dismutase 1), the ABA biosynthesis gene ABA1 (ABA deficient 1) and signaling gene ABH1 (ABA-hypersensitive 1) and the waterlogging responsive gene ADH1 (alcohol dehydrogenase 1), while the transcript of ABI1 (ABA insensitive 1) was decreased. ABA inhibits seed germination and seedling growth and phenotype analysis showed that the integration of abi1-1 mutation into the RAP2.6L overexpression lines reduces ABA sensitivity. These suggest that RAP2.6L overexpression delays waterlogging induced premature senescence and might function through ABI1-mediated ABA signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahsan N, Lee DG, Lee SH, Kang KY, Bahk JD, Choi MS, Lee IJ, Renaut J, Lee BH (2007) A comparative proteomic analysis of tomato leaves in response to waterlogging stress. Physiol Plant 131(4):555–570

    Article  PubMed  CAS  Google Scholar 

  • Ahsan N, Lee DG, Lee KW, Alam I, Lee SH, Bahk JD, Lee BH (2008) Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiol Biochem 46(12):1062–1070

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Arbona V, Hossain Z, Lopez-Climent MF, Perez-Clemente RM, Gomez-Cadenas A (2008) Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiol Plant 132(4):452–466

    Article  PubMed  CAS  Google Scholar 

  • Barrero J, Rodriguez P, Quesada V, Ponce P, Ponce M, Micoi J (2006) Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress. Plant cell Environ 29(10):2000–2008

    Article  PubMed  CAS  Google Scholar 

  • Bellincampi D, Dipierro N, Salvi G, Cervone F, De Lorenzo G (2000) Extracellular H2O2 induced by oligogalacturonides is not involved in the inhibition of the auxin-regulated rolB gene expression in tobacco leaf explants. Plant Physiol 122(4):1379–1386

    Article  PubMed  CAS  Google Scholar 

  • Berberich T, Sugawara K, Harada M, Kusano T (1995) Molecular cloning, characterization and expression of an elongation factor 1 alpha gene in maize. Plant Mol Biol 29(3):611–615

    Article  PubMed  CAS  Google Scholar 

  • Bradford KJ, Hsiao TC (1982) Stomatal behavior and water relations of waterlogged tomato plants. Plant Physiol 70(5):1508–1513

    Article  PubMed  CAS  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45(1):113–122

    Article  PubMed  CAS  Google Scholar 

  • Che P, Lall S, Nettleton D, Howell SH (2006) Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol 141(2):620–637

    Article  PubMed  CAS  Google Scholar 

  • Chung S, Parish RW (2008) Combinatorial interactions of multiple cis-elements regulating the induction of the Arabidopsis XERO2 dehydrin gene by abscisic acid and cold. Plant J 54(1):15–29

    Article  PubMed  CAS  Google Scholar 

  • Cornish K, Zeevaart JA (1988) Phenotypic expression of wild-type tomato and three wilty mutants in relation to abscisic Acid accumulation in roots and leaflets of reciprocal grafts. Plant Physiol 87(1):190–194

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Griffiths R, Hancock J, Neill S (2002) A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci USA 99(25):16314–16318

    Article  PubMed  CAS  Google Scholar 

  • Dörffling K, Dörffling H, Luck E (2009) Improved frost tolerance and winter hardiness in proline overaccumulating winter wheat mutants obtained by in vitro-selection is associated with increased carbohydrate, soluble protein and abscisic acid (ABA) levels. Euphytica 165(3):545–556

    Article  Google Scholar 

  • Else MA, Janowiak F, Atkinson CJ, Jackson MB (2009) Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants. Ann Bot 103(2):313–323

    Article  PubMed  CAS  Google Scholar 

  • Guan L, Scandalios JG (1998) Effects of the plant growth regulator abscisic acid and high osmoticum on the developmental expression of the maize catalase genes. Physiol Plant 104(3):413–422

    Article  CAS  Google Scholar 

  • Hinz M, Wilson IW, Yang J, Buerstenbinder K, Llewellyn D, Dennis ES, Sauter M, Dolferus R (2010) Arabidopsis RAP2. 2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiol 153(2):757–772

    Article  PubMed  CAS  Google Scholar 

  • Hong JH, Chung G, Cowan AK (2009) Delayed leaf senescence by exogenous lyso-phosphatidylethanolamine: towards a mechanism of action. Plant Physiol Biochem 47(6):526–534

    Article  PubMed  CAS  Google Scholar 

  • Hossain Z, Lopez-Climent MF, Arbona V, Perez-Clemente RM, Gomez-Cadenas A (2009) Modulation of the antioxidant system in Citrus under waterlogging and subsequent drainage. J Plant Physiol 166(13):1391–1404

    Article  PubMed  CAS  Google Scholar 

  • Irfan M, Hayat S, Hayat Q, Afroz S, Ahmad A (2010) Physiological and biochemical changes in plants under waterlogging. Protoplasma 241(1–4):3–17

    Article  PubMed  CAS  Google Scholar 

  • Irving L, Sheng YB, Woolley D, Matthew C (2007) Physiological effects of waterlogging on two lucerne varieties grown under glasshouse conditions. J Agron Crop Sci 193(5):345–356

    Article  Google Scholar 

  • Israelsson M, Siegel RS, Young J, Hashimoto M, Iba K, Schroeder JI (2006) Guard cell ABA and CO2 signaling network updates and Ca2+ sensor priming hypothesis. Curr Opin Plant Biol 9(6):654–663

    Article  PubMed  CAS  Google Scholar 

  • Jannat R, Uraji M, Morofuji M, Islam MM, Bloom RE, Nakamura Y, Mcclung CR, Schroeder JI, Mori IC, Murata Y (2011) Roles of intracellular hydrogen peroxide accumulation in abscisic acid signaling in Arabidopsis guard cells. J Plant Physiol 168(16):1919–1926

    Article  PubMed  CAS  Google Scholar 

  • Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53(379):2401–2410

    Article  PubMed  CAS  Google Scholar 

  • Krishnaswamy S, Verma S, Rahman MH, Kav NNV (2011) Functional characterization of four APETALA2-family genes (RAP2. 6, RAP2. 6L, DREB19 and DREB26) in Arabidopsis. Plant Mol Biol 75(1–2):107–127

    Article  PubMed  CAS  Google Scholar 

  • Kumutha D, Ezhilmathi K, Sairam R, Srivastava G, Deshmukh P, Meena R (2009) Waterlogging induced oxidative stress and antioxidant activity in pigeonpea genotypes. Biol Plant 53(1):75–84

    Article  CAS  Google Scholar 

  • Lee S, Kang J, Park HJ, Kim MD, Bae MS, Choi H, Kim SY (2010) DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity. Plant Physiol 153(2):716–727

    Article  PubMed  CAS  Google Scholar 

  • Leul M, Zhou W (1999) Alleviation of waterlogging damage in winter rape by uniconazole application: effects on enzyme activity, lipid peroxidation, and membrane integrity. J Plant Growth Regul 18(1):9–14

    Article  PubMed  CAS  Google Scholar 

  • Leung J, Merlot S, Gosti F, Bertauche N, Blatt MR, Giraudat J (1998) The role of ABI1 in abscisic acid signal transduction: from gene to cell. Symp Soc Exp Biol 51:65–71

    PubMed  CAS  Google Scholar 

  • Licausi F, Van Dongen JT, Giuntoli B, Novi G, Santaniello A, Geigenberger P, Perata P (2010) HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J 62(2):302–315

    Article  PubMed  CAS  Google Scholar 

  • Liu PF, Chang WC, Wang YK, Chang HY, Pan RL (2008) Signaling pathways mediating the suppression of Arabidopsis thaliana Ku gene expression by abscisic acid. Biochim Biophys Acta Gene Regul Mech 1779(3):164–174

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  PubMed  CAS  Google Scholar 

  • Obayashi T, Hayashi S, Saeki M, Ohta H, Kinoshita K (2009) ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res 37(Database issue):D987–D991

    Google Scholar 

  • Onate-Sanchez L, Anderson JP, Young J, Singh KB (2007) AtERF14, a member of the ERF family of transcription factors, plays a nonredundant role in plant defense. Plant Physiol 143(1):400–409

    Article  PubMed  CAS  Google Scholar 

  • Sairam RK, Dharmar K, Chinnusamy V, Meena RC (2009) Waterlogging-induced increase in sugar mobilization, fermentation, and related gene expression in the roots of mung bean (Vigna radiata). J Plant Physiol 166(6):602–616

    Article  PubMed  CAS  Google Scholar 

  • Saleh A (2003) Plant AP2/ERF transcription factors. Genetika 35(1):37–50

    Article  CAS  Google Scholar 

  • Samet JS, Sinclair TR (1980) Leaf senescence and abscisic acid in leaves of field-grown soybean. Plant Physiol 66(6):1164–1168

    Article  PubMed  CAS  Google Scholar 

  • Sang J, Jiang M, Lin F, Xu S, Zhang A, Tan M (2008) Nitric oxide reduces hydrogen peroxide accumulation involved in water stress-induced subcellular anti-oxidant defense in maize plants. J Integr Plant Biol 50(2):231–243

    Article  PubMed  CAS  Google Scholar 

  • Scandalios J (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38(7):995–1014

    Article  PubMed  CAS  Google Scholar 

  • Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17(8):2384–2396

    Article  PubMed  CAS  Google Scholar 

  • Strizhov N, Abraham E, krész L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12(3):557–569

    Article  PubMed  CAS  Google Scholar 

  • Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643):249–255

    Article  PubMed  CAS  Google Scholar 

  • Sun F, Liu P, Xu J, Dong H (2010) Mutation in RAP2.6L, a transactivator of the ERF transcription factor family, enhances Arabidopsis resistance to Pseudomonas syringae. Physiol Mol Plant Pathol 74(5–6):295–302

    Article  CAS  Google Scholar 

  • Wu Y, Sanchez JP, Lopez-Molina L, Himmelbach A, Grill E, Chua NH (2003) The abi1-1 mutation blocks ABA signaling downstream of cADPR action. Plant J 34(3):307–315

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133(1):29–36

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci 10(2):88–94

    Article  PubMed  CAS  Google Scholar 

  • Yin D, Chen S, Chen F, Guan Z, Fang W (2009) Morphological and physiological responses of two chrysanthemum cultivars differing in their tolerance to waterlogging. Environ Exp Bot 67(1):87–93

    Article  CAS  Google Scholar 

  • Zhang X, Zhang Z, Chen J, Chen Q, Wang XC, Huang R (2005) Expressing TERF1 in tobacco enhances drought tolerance and abscisic acid sensitivity during seedling development. Planta 222(3):494–501

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Tanakamaru K, Abe J, Morita S (2007) Influence of waterlogging on some anti-oxidative enzymatic activities of two barley genotypes differing in anoxia tolerance. Acta Physiol Plant 29(2):171–176

    Article  Google Scholar 

  • Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y (2009) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot 60(13):3781–3796

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Mao X, Wang C, Jing R (2010) Overexpression of a common wheat gene TaSnRK2. 8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS ONE 5(12):e16041

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Feng F, He C (2012) Downregulation of ospk1 contributes to oxidative stress and the variations in ABA/GA balance in rice. Plant Mol Biol Rep. doi:10.1007/s11105-011-0386-2

    Google Scholar 

Download references

Acknowledgments

This study was supported by Key Basic Scientific Study and Development Plan (973 plan; grant no. 2012CB114003) and Natural Science Foundation (grant no. 31171830) of China, and Jiangsu Provincial Priority Academic Program Development of Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hansong Dong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2012_9936_MOESM1_ESM.jpg

Fig. S1 Molecular characterization of mutants and RAP2.6L overexpression plants. (A) Scheme of the transformation unit containing 35S promoter and RAP2.6L -GFP sequence. (B) Transcripts of RAP2.6L in mutants and RAP2.6L overexpression plants. Total RNA was prepared from 3-week-old WT, GFP, mutants and RAP2.6L overexpression plants. Transcripts were determined by qRT-PCR. The y axis is presented on a logarithmic scale for better comparison of fold changes. (C) Expression patterns of RAP2.6L in WT, GFP and RAP2.6L overexpression plants. Total RNA was prepared from the leaves of 3-week-old WT, GFP and RAP2.6L overexpression plants. Transcripts were determined by qRT-PCR. (D) Protein gel blot shows the expression level of RAP2.6L with GFP fusion proteins using GFP antibody in WT and RAP2.6L overexpression plants. Values are means ±SE (n=6). Means denoted by the same letter did not significantly differ at P <0.05 according to Student’s t test. (JPEG 472 kb)

11103_2012_9936_MOESM2_ESM.jpg

Fig. S2 Localization of the RAP2.6L protein in plants. Localization of RAP2.6L in GFP and RAP2.6L overexpression plants. Roots of RAP2.6L overexpression seedlings were used for examination using a laser-scanning confocal microscope (Bio-Rad MRC 1024). Scale bars: 20µM. OE: RAP2.6L RAP2.6L overexpression plants; 121GFP: empty vector RAP2.6L overexpression plants. (JPEG 573 kb)

11103_2012_9936_MOESM3_ESM.jpg

Fig. S3 RAP2.6L overexpression accelerates flowering in Arabidopsis. Seeds were sown on MS medium and incubated for 2 days at 4 oC in darkness to break dormancy before transferring to the growth chamber. Flowering phenotype was recorded after 18 days in a 24-h light conditions. (JPEG 1041 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P., Sun, F., Gao, R. et al. RAP2.6L overexpression delays waterlogging induced premature senescence by increasing stomatal closure more than antioxidant enzyme activity. Plant Mol Biol 79, 609–622 (2012). https://doi.org/10.1007/s11103-012-9936-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-012-9936-8

Keywords

Navigation