Skip to main content

De novo transcriptome sequencing of Momordica cochinchinensis to identify genes involved in the carotenoid biosynthesis

Abstract

The ripe fruit of Momordica cochinchinensis Spreng, known as gac, is featured by very high carotenoid content. Although this plant might be a good resource for carotenoid metabolic engineering, so far, the genes involved in the carotenoid metabolic pathways in gac were unidentified due to lack of genomic information in the public database. In order to expedite the process of gene discovery, we have undertaken Illumina deep sequencing of mRNA prepared from aril of gac fruit. From 51,446,670 high-quality reads, we obtained 81,404 assembled unigenes with average length of 388 base pairs. At the protein level, gac aril transcripts showed about 81.5 % similarity with cucumber proteomes. In addition 17,104 unigenes have been assigned to specific metabolic pathways in Kyoto Encyclopedia of Genes and Genomes, and all of known enzymes involved in terpenoid backbones biosynthetic and carotenoid biosynthetic pathways were also identified in our library. To analyze the relationship between putative carotenoid biosynthesis genes and alteration of carotenoid content during fruit ripening, digital gene expression analysis was performed on three different ripening stages of aril. This study has revealed putative phytoene synthase, 15-cis-phytone desaturase, zeta-carotene desaturase, carotenoid isomerase and lycopene epsilon cyclase might be key factors for controlling carotenoid contents during aril ripening. Taken together, this study has also made availability of a large gene database. This unique information for gac gene discovery would be helpful to facilitate functional studies for improving carotenoid quantities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Angeloni F, Wagemaker CAM, Jetten MSM, Op den Camp HJM, Janssen-Megens EM, Francoijs K-J, Stunnenberg HG, Ouborg NJ (2011) De novo transcriptome characterization and development of genomic tools for Scabiosa columbaria L. using next-generation sequencing techniques. Mol Ecol Resour 11:662–674

    PubMed  Article  CAS  Google Scholar 

  2. Aoki H, Kieu NT, Kuze N, Tomisaka K, Van CN (2002) Carotenoid pigments in GAC fruit (Momordica cochinchinensis SPRENG). Biosci Biotechnol Biochem 66:2479–2482

    PubMed  Article  CAS  Google Scholar 

  3. Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

    PubMed  CAS  Google Scholar 

  4. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  5. Bininda-Emonds ORP (2004) The evolution of supertrees. Trends Ecol Evol 19:315–322

    PubMed  Article  Google Scholar 

  6. Bramley PM (2002) Regulation of carotenoid formation during tomato fruit ripening and development. J Exp Bot 53:2107–2113

    PubMed  Article  CAS  Google Scholar 

  7. Burke DS, Smidt CR, Vuong LT (2005) Momordica cochinchinensis, Rosa roxburghii, wolfberry, and sea buckthorn-highly nutritional fruits supported by tradition and science. Curr Top Nutraceutical Res 3:259–266

    CAS  Google Scholar 

  8. Busch M, Seuter A, Hain R (2002) Functional analysis of the early steps of carotenoid biosynthesis in tobacco. Plant Physiol 128:439–453

    PubMed  Article  CAS  Google Scholar 

  9. Butowt R, Granot D, Rodriguez-Garcia MI (2003) A putative plastidic glucose translocator is expressed in heterotrophic tissues that do not contain starch, during olive (Olea europea L.) fruit ripening. Plant Cell Physiol 44:1152–1161

    PubMed  Article  CAS  Google Scholar 

  10. Castillo R, Fernandez JA, Gomez–Gomez L (2005) Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives. Plant Physiol 139:674–689

    PubMed  Article  CAS  Google Scholar 

  11. Chaudhary N, Nijhawan A, Khurana JP, Khurana P (2010) Carotenoid biosynthesis genes in rice: structural analysis, genome-wide expression profiling and phylogenetic analysis. Mol Genet Genomics 283:13–33

    PubMed  Article  CAS  Google Scholar 

  12. Chew BP, Park JS (2004) Carotenoid action on the immuneresponse. J Nutr 134:257S–261S

    PubMed  CAS  Google Scholar 

  13. Clotault J, Peltier D, Berruyer R, Thomas M, Briard M, Geoffriau E (2008) Expression of carotenoid biosynthesis genes during carrot root development. J Exp Bot 59:3563–7353

    PubMed  Article  CAS  Google Scholar 

  14. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    PubMed  Article  CAS  Google Scholar 

  15. Cunningham FX Jr (2002) Regulation of carotenoid synthesis and accumulation in plants. Pure Appl Chem 74:1409–1417

    Google Scholar 

  16. Cunningham FX Jr, Gantt E (2007) A portfolio of plasmids for identification and analysis of carotenoid pathway enzymes: Adonis aestivalis as a case study. Photosynth Res 92:245–259

    PubMed  Article  CAS  Google Scholar 

  17. Daqiu Z, Chunhua Z, Jun T (2011) Carotenoid accumulation and carotenogenic gene expression during two types of persimmon fruit (Diospyros kaki L.) development. Plant Mol Biol Rep 29:646–654

    Article  Google Scholar 

  18. Del Villar-Martinez AA, Garcia-Saucedo PA, Carabez-Trejo A, Cruz-Hernandez A, Paredes-Lopez O (2005) Carotenogenic gene expression and ultrastructural changes during development in marigold. J Plant Physiol 162:1046–1056

    PubMed  Article  Google Scholar 

  19. DellaPenna D (1999) Carotenoid synthesis and function in plants: Insights from mutant studies in Arabidopsis. Pure Appl Chem 71:2205–2212

    Article  CAS  Google Scholar 

  20. Dellapenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738

    PubMed  Article  CAS  Google Scholar 

  21. Devitt LC, Fanning K, Dietzgen RG, Holton TA (2010) Isolation and functional characterization of a lycopene β-cyclase gene that controls fruit colour of papaya (Carica papaya L.). J Exp Bot 61:33–39

    PubMed  Article  CAS  Google Scholar 

  22. Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    PubMed  Article  CAS  Google Scholar 

  23. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    PubMed  Article  CAS  Google Scholar 

  24. Eveland AL, Satoh-Nagasawa N, Goldshmidt A, Meyer S, Beatty M, Sakai H, Ware D, Jackson D (2010) Digital gene expression signatures for maize development. Plant Physiol 154:1024–1039

    PubMed  Article  CAS  Google Scholar 

  25. Flores-Pérez U, Pérez-Gil J, Closa M, Wright LP, Botella-Pavía P, Phillips MA, Ferrer A, Gerhenzon J, Rodríguez-Concepción M (2010) PLEIOTROPIC REGULATORY LOCUS 1 (PRL1) integrates the regulation of sugar responses with isoprenoid metabolism in Arabidopsis. Mol Plant 3:101–112

    PubMed  Article  Google Scholar 

  26. Frank HA, Cogdell RJ (1996) Carotenoids in photosynthesis. Photochem Photobiol 63:257–264

    PubMed  Article  CAS  Google Scholar 

  27. Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    PubMed  Article  CAS  Google Scholar 

  28. Fraser PD, Romer S, Shipton CA, Mills PB, Kiano JW, Misawa N, Drake RG, Schuch W, Bramley PM (2002) Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc Natl Acad Sci USA 99:1092–1097

    PubMed  Article  CAS  Google Scholar 

  29. Garg R, Patel RK, Tyagi AK, Jain M (2011) De Novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res 18:53–63

    PubMed  Article  CAS  Google Scholar 

  30. Giovannucci E (2002) Lycopene and prostate cancer risk: methodological considerations in the epidemiologic literature. Pure App Chem 74:1427–1434

    Article  CAS  Google Scholar 

  31. Giuliano G, Tavazza R, Diretto G, Beyer P, Taylor MA (2008) Metabolic engineering of carotenoid biosynthesis in plants. Trends Biotechnol 26:139–145

    PubMed  Article  CAS  Google Scholar 

  32. Hao DC, Ge G, Xiao P, Zhang YY, Yang L (2011) The first insight into the tissue specific taxus transcriptome via Illumina second generation sequencing. PLoS ONE 6:e21220

    Article  CAS  Google Scholar 

  33. Harborne JB (2001) Twenty-five years of chemical ecology. Nat Prod Rep 18:361–379

    PubMed  Article  CAS  Google Scholar 

  34. Hyun TK, Hoffmann A, Sinha AK, Roitsch T (2009) Tomato mitogen activated protein kinases regulate the expression of extracellular invertase Lin6 in response to stress related stimuli. Funct Plant Biol 36:1088–1097

    Article  CAS  Google Scholar 

  35. Isaacson T, Ronen G, Zamir D, Hirschberg J (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for production of β-carotene and xanthophylls in plants. Plant Cell 14:333–342

    PubMed  Article  CAS  Google Scholar 

  36. Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. In: Proceedings of international conference, Intell Syst Mol Biol pp 138–148

  37. Ishida BK, Turner C, Chapman MH, Mckeon TA (2004) Fatty acid and carotenoid composition of Gac (Monordica cochinchinensis Spreng) fruit. J Agric Food Chem 52:274–279

    PubMed  Article  CAS  Google Scholar 

  38. Iwamoto M, Okabe H, Yamauchi T, Tanaka M, Rokutani Y, Hara S, Mihashi K, Higuchi R (1985) Studies on the constituents of Momordica cochinchinensis Spreng. I. Isolation and characterization of the seed saponins, momordica saponins I and II. Chem Pharm Bull 33:464–478

    Article  CAS  Google Scholar 

  39. Kasahara H, Hanada A, Kuzuyama T, Takagi M, Kamiya Y, Yamaguchi S (2002) Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J Biol Chem 277:45188–45194

    PubMed  Article  CAS  Google Scholar 

  40. Kim J-Y, Mahe A, Brangeon J, Prioul JL (2000) A maize vacuolar invertase, IVR2, is induced by water stress. Organ/tissue specificity and diurnal modulation of expression. Plant Physiol 124:71–84

    PubMed  Article  CAS  Google Scholar 

  41. Kim MK, Lee BS, In JG, Sun H, Yoon JH, Yang DC (2006) Comparative analysis of expressed sequence tags (ESTs) of ginseng leaf. Plant Cell Rep 25:599–606

    PubMed  Article  CAS  Google Scholar 

  42. Kubola J, Siriamornpun S (2011) Phytochemicals and antioxidant activity of different fruit fractions (peel, pulp, aril and seed) of Thai gac (Momordica cochinchinensis Spreng). Food Chem 127:1138–1145

    Article  CAS  Google Scholar 

  43. Laule O, Furholz A, Chang H-S, Zhu T, Wang X, Heifetz PB, Gruissem W, Lange MB (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:6866–6871

    PubMed  Article  CAS  Google Scholar 

  44. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

    PubMed  Article  CAS  Google Scholar 

  45. Logacheva MD, Kasianov AS, Vinogrado DV, Samigullin TH, Gelfand MS, Makeev VJ, Penin AA (2011) De novo sequencing and characterization of floral transcriptome in two species of buckwheat (Fagopyrum). BMC Genomics 12:30

    PubMed  Article  CAS  Google Scholar 

  46. Markovic K, Hruskar M, Vahcic N (2006) Lycopene content of tomato products and their contribution to the lycopene intake of Croatians. Nutr Res 26:556–560

    Article  CAS  Google Scholar 

  47. Marty I, Bureau S, Sarkissian G, Gouble B, Audergon JM, Albagnac G (2005) Ethylene regulation of carotenoid accumulation and carotenogenic gene expression in colour-contrasted apricot varieties (Prunus armeniaca). J Exp Bot 417:1877–1886

    Article  Google Scholar 

  48. Moehs CP, Tian L, Osteryoung KW, DellaPenna D (2001) Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Mol Biol 45:281–293

    PubMed  Article  CAS  Google Scholar 

  49. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    PubMed  Article  CAS  Google Scholar 

  50. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349

    PubMed  Article  CAS  Google Scholar 

  51. Nantachit K, Tuchinda P (2009) Antimicrobial activity of hexane and dichloromethane extracts from Momordica cochinchinensis (Lour.) Spreng leaves. Thai Pharm Health Sci J 4:15–20

    Google Scholar 

  52. Nguyen-Guoc B, Foyer CH (2001) A role for ‘futile cycles’ involving invertase and sucrose synthase in sucrose metabolism of tomato fruit. J Exp Bot 52:881–889

    Article  Google Scholar 

  53. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27:29–34

    PubMed  Article  CAS  Google Scholar 

  54. Park H, Kreunen SS, Cuttriss AJ, DellaPenna D, Pogson BJ (2002) Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell 14:321–332

    PubMed  Article  CAS  Google Scholar 

  55. Pogson B, McDonald KA, Truong M, Britton G, DellaPenna D (1996) Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Plant Cell 8:1627–1639

    PubMed  CAS  Google Scholar 

  56. Rodriguez-Concepcion M (2006) Early steps in isoprenoid biosynthesis: multilevel regulation of the supply of common precursors in plant cells. Phytochem Rev 5:1–15

    Article  CAS  Google Scholar 

  57. Romer S, Hugueney P, Bouvier F, Camara B, Kuntz M (1993) Expression of the genes encoding the early carotenoid biosynthetic enzymes in Capsicum annuum. Biochem Bioph Res Co 196:1414–1421

    Article  CAS  Google Scholar 

  58. Ronen G, Cohen M, Zamir D, Hirschberg J (1999) Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J 17:341–351

    PubMed  Article  CAS  Google Scholar 

  59. Saitou N, Nei N (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  60. Saldanha AJ (2004) Java Treeview–extensible visualization of microarray data. Bioinformatics 20:3246–3248

    PubMed  Article  CAS  Google Scholar 

  61. Sun C, Li Y, Wu Q, Luo H, Sun Y, Song J, Lui EM, Chen S (2010) De novo sequencing and analysis of the American ginseng root transcriptome using GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics 11:262

    PubMed  Article  Google Scholar 

  62. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary and genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    PubMed  Article  CAS  Google Scholar 

  63. Tang Q, Ma X, Mo C, Wilson IW, Song C, Zhao H, Yang Y, Fu W, Qiu D (2011) An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis. BMC Genomics 12:343

    PubMed  Article  CAS  Google Scholar 

  64. Tuan PA, Kim JK, Park NI, Lee SY, Park SU (2011) Carootenoid content and expression of phytoene synthase and phytoene desaturase genes in bitter melon (Momordica charatia). Food Chem 126:1686–1692

    Article  CAS  Google Scholar 

  65. Vuong LT, Dueker SR, Murphy SP (2002) Plasma beta-carotene and retinol concentrations of children increase after a 30-d supplementation with the fruit Momordica cochinchinensis (gac). Am J Clin Nutr 75:872–879

    CAS  Google Scholar 

  66. Wang H, Nagegowda DA, Rawat R, Bouvier-Nave P, Guo D, Bach TJ, Chye M-L (2012) Overexpression of Brassica juncea wild-type and mutant HMG-CoA synthase 1 in Arabidopsis up-regulates genes in sterol biosynthesis and enhances sterol production and stress tolerance. Plant Biotechnol J 10:31–42

    PubMed  Article  CAS  Google Scholar 

  67. Wenping H, Yuan Z, Jie S, Lijun Z, Zhezhi W (2011) De vono transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients. Genomics 98:272–279

    PubMed  Article  Google Scholar 

  68. Wille A, Zimmermann P, Vranová E, Fürholz A, Laule O, Bleuler S, Hennig L, Prelic A, von Rohr P, Thiele L, Zitzler E, Gruissem W, Bühlmann P (2004) Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana. Genome Biol 5:R92

    PubMed  Article  Google Scholar 

  69. Yang SS, Tu ZJ, Cheung F, Xu WW, Lamb JFS, Jung HJ, Vance CP, Gronwald JW (2011) Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems. BMC Genomics 12:199

    PubMed  Article  CAS  Google Scholar 

  70. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34(Web Server issue):W293–W297

    Google Scholar 

  71. Zhang L, Kai G-Y, Lu B-B, Zhang H-M, Tang K-X, Jiang J-H, Chen W-S (2005) Metabolic engineering of tropane alkaloid biosynthesis in plants. J Integr Plant Biol 47:136–143

    Article  CAS  Google Scholar 

  72. Zhu C, Naqvi S, Breitenbach J, Sanmann G, Christou P, Capell T (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci USA 105:18232–18237

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Science and Technology and a grant from the Next-Generation BioGreen 21 Program (SSAC grant PJ008109, PJ008184), Rural Development Administration, Republic of Korea, and funded by the Industrial Strategic technology development program, 10040231, “Bioinformatics platform development for next generation bioinformation analysis”, the Ministry of Knowledge Economy (MKE), Republic of Korea.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jae-Yean Kim.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hyun, T.K., Rim, Y., Jang, HJ. et al. De novo transcriptome sequencing of Momordica cochinchinensis to identify genes involved in the carotenoid biosynthesis. Plant Mol Biol 79, 413–427 (2012). https://doi.org/10.1007/s11103-012-9919-9

Download citation

Keywords

  • Carotenoid
  • Digital gene expression
  • Momordica cochinchinensis Spreng
  • Next generation sequencing
  • Transcriptome