Plant Molecular Biology

, Volume 81, Issue 3, pp 309–325 | Cite as

Transcriptional regulation of tocopherol biosynthesis in tomato

  • Leandro Quadrana
  • Juliana Almeida
  • Santiago N. Otaiza
  • Tomas Duffy
  • Junia V. Corrêa da Silva
  • Fabiana de Godoy
  • Ramon Asís
  • Luisa Bermúdez
  • Alisdair R. Fernie
  • Fernando Carrari
  • Magdalena Rossi


Tocopherols, compounds with vitamin E (VTE) activity, are potent lipid-soluble antioxidants synthesized only by photosynthetic organisms. Their biosynthesis requires the condensation of phytyl-diphosphate and homogentisate, derived from the methylerythritol phosphate (MEP) and shikimate pathways (SK), respectively. These metabolic pathways are central in plant chloroplast metabolism and are involved in the biosynthesis of important molecules such as chlorophyll, carotenoids, aromatic amino-acids and prenylquinones. In the last decade, few studies have provided insights into the regulation of VTE biosynthesis and its accumulation. However, the pathway regulatory mechanism/s at mRNA level remains unclear. We have recently identified a collection of tomato genes involved in tocopherol biosynthesis. In this work, by a dedicated qPCR array platform, the transcript levels of 47 genes, including paralogs, were determined in leaves and across fruit development. Expression data were analyzed for correlation with tocopherol profiles by coregulation network and neural clustering approaches. The results showed that tocopherol biosynthesis is controlled both temporally and spatially however total tocopherol content remains constant. These analyses exposed 18 key genes from MEP, SK, phytol recycling and VTE-core pathways highly associated with VTE content in leaves and fruits. Moreover, genomic analyses of promoter regions suggested that the expression of the tocopherol-core pathway genes is trancriptionally coregulated with specific genes of the upstream pathways. Whilst the transcriptional profiles of the precursor pathway genes would suggest an increase in VTE content across fruit development, the data indicate that in the M82 cultivar phytyl diphosphate supply limits tocopherol biosynthesis in later fruit stages. This is in part due to the decreasing transcript levels of geranylgeranyl reductase (GGDR) which restricts the isoprenoid precursor availability. As a proof of concept, by analyzing a collection of Andean landrace tomato genotypes, the role of the pinpointed genes in determining fruit tocopherol content was confirmed. The results uncovered a finely tuned regulation able to shift the precursor pathways controlling substrate influx for VTE biosynthesis and overcoming endogenous competition for intermediates. The whole set of data allowed to propose that 1-deoxy-D-xylulose-5-phosphate synthase and GGDR encoding genes, which determine phytyl-diphosphate availability, together with enzyme encoding genes involved in chlorophyll-derived phytol metabolism appear as the most plausible targets to be engineered aiming to improve tomato fruit nutritional value.


Tomato Metabolism Tocopherol Vitamin E Transcriptional regulation 



L.Q. was recipient of a fellowship of Agencia Nacional de Promoción Científica y Tecnológica and Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina). J.A. L.B. and F.G. were recipients of a fellowship of Fundação à Amparo da Pesquisa do Estado de São Paulo (Brazil). J.C.S. was recipient of a fellowship of Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazil). R.A. and F.C. are members of Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina). This work was carried out in compliance with current laws governing genetic experimentation in Brazil and in Argentina. This work was partially supported with grants from Fundação à Amparo da Pesquisa do Estado de São Paulo, Conselho Nacional de Desenvolvimento Científico e Tecnológico and Universidade de São Paulo (Brazil); Max Planck Society (Germany); Instituto Nacional de Tecnologia Agropecuária, Consejo Nacional de Investigaciones Científicas y Técnicas and Agencia Nacional de Promoción Científica y Tecnológica (Argentina); and under the auspices of the European Solanaceae Integrated Project FOOD-CT-2006-016214.

Supplementary material

11103_2012_1_MOESM1_ESM.pdf (537 kb)
Supplementary material 1 (PDF 536 kb)
11103_2012_1_MOESM2_ESM.xls (78.5 mb)
Supplementary material 2 (XLS 80370 kb)
11103_2012_1_MOESM3_ESM.xls (91 kb)
Supplementary material 3 (XLS 91 kb)


  1. Abbasi AR, Hajirezaei M, Hofius D, Sonnewald U, Voll LM (2007) Specific roles of α- and γ-tocopherol in abiotic stress responses of transgenic tobacco plants. Plant Physiol 143:720–738CrossRefGoogle Scholar
  2. Abushita AA, Hebshi EA, Daood HG, Biacs PA (1997) Determination of antioxidant vitamins in tomatoes. Food Chem 60:207–212CrossRefGoogle Scholar
  3. Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17:2954–2965CrossRefPubMedGoogle Scholar
  4. Almeida J, Quadrana L, Asís R, Setta N, de Godoy F, Bermúdez L, Otaiza SN, Correa da Silva JV, Fernie AR, Carrari F, Rossi M (2011) Genetic dissection of vitamin E biosynthesis in tomato. J Exp Bot 62:3781–3798CrossRefPubMedGoogle Scholar
  5. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250CrossRefPubMedGoogle Scholar
  6. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399CrossRefPubMedGoogle Scholar
  7. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36PubMedGoogle Scholar
  8. Bailey TL, Bodén M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME suite: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208CrossRefPubMedGoogle Scholar
  9. Barsan C, Sanchez-Bel P, Rombaldi C, Egea I, Rossignol M, Kuntz M, Zouine M, Latché A, Bouzayen M, Pech JC (2010) Characteristics of the tomato chromoplast revealed by proteomic analysis. J Exp Bot 61:2413–2431CrossRefPubMedGoogle Scholar
  10. Bombarely A, Menda N, Tecle IY, Buels RM, Strickler S, Fischer-York T, Pujar A, Leto J, Gosselin J, Mueller LA (2011) The Sol Genomics Network ( growing tomatoes using Perl. Nucleic Acids Res 39:1149–1155CrossRefGoogle Scholar
  11. Botella-Pavía P, Besumbes O, Phillips MA, Carretero-Paulet L, Boronat A, Rodriguez-Concepcion M (2004) Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors. Plant J 40:188–199CrossRefPubMedGoogle Scholar
  12. Bülow L, Engelmann S, Schindler M, Hehl R (2009) AthaMap, integrating transcriptional and post-transcriptional data. Nucleic Acids Res 37:D983–D986CrossRefPubMedGoogle Scholar
  13. Busk PK, Pages M (1998) Regulation of abscisic acid-induced transcription. Plant Mol Biol 37:425–435CrossRefPubMedGoogle Scholar
  14. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622CrossRefPubMedGoogle Scholar
  15. Carrari F, Fernie AR (2006) Metabolic regulation underlying tomato fruit development. J Exp Bot 57:1883–1897CrossRefPubMedGoogle Scholar
  16. Carrari F, Baxter C, Usadel B, Urbanczyk-Wochniak E, Zanor MI, Nunes-Nesi A, Nikiforova V, Centero D, Ratzka A, Pauly M, Sweetlove L, Fernie AR (2006) Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behaviour. Plant Physiol 142:1380–1396CrossRefPubMedGoogle Scholar
  17. Carretero-Paulet L, Cairó A, Botella-Pavía P, Besumbes O, Campos N, Boronat A, Rodríguez-Concepción M (2006) Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase. Plant Mol Biol 62:683–695CrossRefPubMedGoogle Scholar
  18. Clarke ND, Granek JA (2003) Rank order metrics for quantifying the association of sequence features with gene regulation. Bioinformatics 19:212–218CrossRefPubMedGoogle Scholar
  19. Córdoba E, Salmi M, León P (2009) Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. J Exp Bot 60:2933–2943CrossRefPubMedGoogle Scholar
  20. Dal Cin V, Tiemana DM, Tohge T, McQuinn R, de Vos RCH, Osorio S, Schmelz EA, Taylor MG, Smits-Kroon MT, Schuurink RC, Haring MA, Giovannoni J, Fernie AR, Klee HJ (2011) Identification of genes in the phenylalanine metabolic pathway by ectopic expression of a MYB transcription factor in tomato fruit. Plant Cell 23:2738–2753CrossRefPubMedGoogle Scholar
  21. DellaPenna D, Mène-Saffrané L (2011) Vitamin E. In: Kader JC, Delseny M (eds) Advances in botanical research, vol 59. Academic Press, London, pp 179–227Google Scholar
  22. Enfissi EMA, Fraser PD, Lois LM, Boronat A, Schuch W, Bramley PM (2005) Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotech J 3:17–27CrossRefGoogle Scholar
  23. Enfissi EM, Barneche F, Ahmed I, Lichtlé C, Gerrish C, McQuinn RP, Giovannoni JJ, Lopez-Juez E, Bowler C, Bramley PM, Fraser PD (2010) Integrative transcript and metabolite analysis of nutritionally enhanced DE-ETIOLATED1 downregulated tomato fruit. Plant Cell 22:1190–1215CrossRefPubMedGoogle Scholar
  24. Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8:131CrossRefPubMedGoogle Scholar
  25. Ezcurra I, Ellerström M, Wycliffe P, Stalberg K, Rask L (1999) Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression. Plant Mol Biol 40:699–709CrossRefPubMedGoogle Scholar
  26. Falk J, Munné-Bosch S (2010) Tocochromanol functions in plants: antioxidation and beyond. J Exp Bot 61:1549–1566CrossRefPubMedGoogle Scholar
  27. Fitzpatrick TB, Basset GJC, Borel P, Carrari F, DellaPenna D, Fraser PH, Hellmann H, Osorio S, Rothan C, Valpuesta V, Caris-Veyrat C, Fernie AR (2012) Vitamin deficiencies in humans: can plant science help? Plant Cell 24:395–414CrossRefPubMedGoogle Scholar
  28. Fraser PD, Enfissi EM, Halket JH, Truesdale MR, Yu DM, Gerrish C, Bramley PM (2007) Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids and intermediary metabolism. Plant Cell 19:3194–3211CrossRefPubMedGoogle Scholar
  29. Frith MC (2011) A new repeat-masking method enables specific detection of homologous sequences. Nucleic Acids Res 39:e23CrossRefPubMedGoogle Scholar
  30. Fukushima A, Nishizawa T, Hayakumo M, Hikosaka S, Saito K, Goto E, Kusano M (2012) Exploring tomato gene functions based on coexpression modules using graph clustering and differential coexpression approaches. Plant Physiol 158:1487–1502CrossRefPubMedGoogle Scholar
  31. Guevara-García A, San Roman C, Arroyo A, Cortes ME, De La Luz Gutierrez-Nava M, Leon P (2005) Characterization of the Arabidopsis clb6 mutant illustrates the importance of posttranscriptional regulation of the methyl-d-erythritol 4-phosphate pathway. Plant Cell 17:628–643CrossRefPubMedGoogle Scholar
  32. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19CrossRefPubMedGoogle Scholar
  33. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300CrossRefPubMedGoogle Scholar
  34. Holländer-Czytko H, Grabowski J, Sandorf I, Weckermann K, Weiler EW (2005) Tocopherol content and activities of tyrosine aminotransferase and cystine lyase in Arabidopsis under stress conditions. J Plant Physiol 162:767–770CrossRefPubMedGoogle Scholar
  35. Horvath G, Wessjohann L, Bigirimana J, Jansen M, Guisez Y, Caubergs R, Horemans N (2006a) Differential distribution of tocopherols and tocotrienols in photosynthetic and non-photosynthetic tissues. Phytochemistry 67:1185–1195CrossRefPubMedGoogle Scholar
  36. Horvath G, Wessjohann L, Bigirimana J, Monica H, Jansen M, Guisez Y, Caubergs R, Horemans N (2006b) Accumulation of tocopherols and tocotrienols during seed development of grape (Vitis vinifera L. cv. Albert Lavallee). Plant Physiol Biochem 44:724–731CrossRefPubMedGoogle Scholar
  37. Ischebeck T, Zbierzak AM, Kanwischer M, Dormann P (2006) A salvage pathway for phytol metabolism in Arabidopsis. J Biol Chem 281:2470–2477CrossRefPubMedGoogle Scholar
  38. Jiménez A, Creissen G, Kular B, Firmin J, Robinson S, Verhoeyen M, Mullineaux P (2002) Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta 214:751–758CrossRefPubMedGoogle Scholar
  39. Klee HJ (2010) Improving the flavor of fresh fruits: genomics, biochemistry, and biotechnology. New Phytol 187:44–56CrossRefPubMedGoogle Scholar
  40. Kobayashi N, DellaPenna D (2008) Tocopherol metabolism, oxidation and recycling under high light stress in Arabidopsis. Plant J 55:607–618CrossRefPubMedGoogle Scholar
  41. Krieger-Liszkay A, Trebst A (2006) Tocopherol is the scavenger of singlet oxygen produced by the triplet states of chlorophyll in the PSII reaction centre. J Exp Bot 57:1677–1684CrossRefPubMedGoogle Scholar
  42. Lois R, Dietrich A, Hahlbrock K, Schulz W (1989) A phenylalanine ammonia-lyase gene from parsley: structure, regulation and identification of elicitor and light responsive cis-acting elements. EMBO J 8:1641–1648PubMedGoogle Scholar
  43. Lois LM, Rodríguez-Concepción M, Gallego F, Campos N, Boronat A (2000) Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. Plant J 22:503–513CrossRefPubMedGoogle Scholar
  44. Loyola J, Verdugo I, González E, Casaretto JA, Ruiz-Lara S (2012) Plastidic isoprenoid biosynthesis in tomato: physiological and molecular analysis in genotypes resistant and sensitive to drought stress. Plant Biol (Stuttg) 14:149–156Google Scholar
  45. Lytovchenko A, Eickmeier I, Pons C, Osorio S, Szecowka M, Lehmberg K, Arrivault S, Tohge T, Pineda B, Anton MT, Hedtke B, Lu Y, Fisahn J, Bock R, Stitt M, Grimm B, Granell A, Fernie AR (2011) Tomato fruit photosynthesis is seemingly unimportant in primary metabolism and ripening but plays a considerable role in seed development. Plant Physiol 157:1650–1663CrossRefPubMedGoogle Scholar
  46. Mahony S, Benos PV (2007) STAMP: a web tool for exploring DNA-binding motif similarities. Nucleic Acids Res 35:253–258CrossRefGoogle Scholar
  47. Marshall DR, Brown AHD (1975) Optimum sampling strategies in genetic conservation. In: Frankel OH, Hawkes JG (eds) Crop genetic resources today and tomorrow. Cambridge University Press, Cambridge, pp 15–36Google Scholar
  48. Meléndez-Martínez AJ, Fraser PD, Bramley PM (2010) Accumulation of health promoting phytochemicals in wild relatives of tomato and their contribution to in vitro antioxidant activity. Phytochemistry 71:1104–1114CrossRefPubMedGoogle Scholar
  49. Milone D, Stegmayer G, Kamenetzky L, Lopez M, Lee JM, Giovannoni JJ, Carrari F (2010) *omeSOM: a software for clustering and visualization of transcriptional and metabolite data mined from interspecific crosses of crop plants. BMC Bioinformatics 11:438–447CrossRefPubMedGoogle Scholar
  50. Moco S, Capanoglu E, Tikunov Y, Bino RJ, Boyacioglu D, Hall RD, Vervoort J, De Vos CH (2007) Tissue specialization at the metabolite level is perceived during the development of tomato fruit. J Exp Bot 58:4131–4146CrossRefPubMedGoogle Scholar
  51. Munné-Bosch S, Alegre L (2002) The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci 21:31–57Google Scholar
  52. Naqvi S, Farré G, Zhu C, Sandmann G, Capell T, Christou P (2010) Simultaneous expression of Arabidopsis ρ-hydroxyphenylpyruvate dioxygenase and MPBQ methyltransferase in transgenic corn kernels triples the tocopherol content. Transgenic Res 20:177–181CrossRefPubMedGoogle Scholar
  53. Norris SR, Barrette TR, DellaPenna D (1995) Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell 7:2139–2149PubMedGoogle Scholar
  54. Paetzold H, Garms S, Bartram S, Wieczorek J, Uros-Gracia EM, Rodriguez-Concepción M, Boland W, Strack D, Hause B, Walter MH (2010) The isogene 1-deoxy-D-xylulose 5-phosphate synthase II controls isoprenoid profiles, precursor pathway allocation and density of tomato trichomes. Molecular Plant ssq032v1-ssq032Google Scholar
  55. Pavesi G, Pesole G (2006) Using Weeder for the discovery of conserved transcription factor binding sites. Curr Protoc Bioinformatics Chapter 2: Unit 2.11Google Scholar
  56. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36CrossRefPubMedGoogle Scholar
  57. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515CrossRefPubMedGoogle Scholar
  58. Phatthiyaa A, Takahashib S, Chareonthiphakornc N, Koyamab T, Wititsuwannakuld D, Wititsuwannakul R (2007) Cloning and expression of the gene encoding solanesyl diphosphate synthase from Hevea brasiliensis. Plant Sci 4:824–831CrossRefGoogle Scholar
  59. Quadrana L, Rodriguez MC, Lopez M, Bermudez L, Nunes-Nesi A, Fernie AR, Descalzo A, Asis R, Rossi MM, Asurmendi S, Carrari F (2011) Coupling virus induced gene silencing to exogenous green fluorescence protein expression provides a highly efficient system for functional genomics, in Arabidopsis and across all stages of tomato fruit development. Plant Physiol 56:1278–1291CrossRefGoogle Scholar
  60. Rasmussen S, Dixon RA (1999) Transgene-mediated and elicitor-induced perturbation of metabolic channeling at the entry point into the phenylpropanoid pathway. Plant Cell 11:1537–1551PubMedGoogle Scholar
  61. Riewe D, Koohi M, Lisec J, Pfeiffer M, Lippmann R, Schmeichel J, Willmitzer L, Altmann T (2012) A tyrosine aminotransferase involved in tocopherol synthesis in Arabidopsis. Plant J. doi: 10.1111/j.1365-313X.2012.05035.x Google Scholar
  62. Rippert P, Scimemi C, Dubald M, Matringe M (2004) Engineering plant shikimate pathway for production of tocotrienol and improving herbicide resistance. Plant Physiol 134:92–100CrossRefPubMedGoogle Scholar
  63. Rodríguez-Villalón A, Gas E, Rodriguez-Concepcion M (2009) Phytoene synthase activity controls the biosynthesis of carotenoids and the supply of their metabolic precursors in dark-grown Arabidopsis seedlings. Plant J 60:424–435CrossRefPubMedGoogle Scholar
  64. Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to ß-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc Natl Acad Sci USA 97:11102–11107CrossRefPubMedGoogle Scholar
  65. Rose JKC, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS (2004) Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J 39:715–733CrossRefPubMedGoogle Scholar
  66. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  67. Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ, Moorman AF (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37:e45CrossRefPubMedGoogle Scholar
  68. Sablowski RW, Moyano E, Culianez-Macia FA, Schuch W, Martin C, Bevan M (1994) A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes. EMBO J 13:128–137PubMedGoogle Scholar
  69. Sadre R, Gruber J, Frentzen M (2006) Characterization of homogentisate prenyltransferases involved in plastoquinone-9 and tocochromanol biosynthesis. FEBS Lett 580:5357–5362CrossRefPubMedGoogle Scholar
  70. Sattler SE, Gilliland LU, Magallanes-Lundback M, Pollard M, DellaPenna D (2004) Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell 16:1419–1432CrossRefPubMedGoogle Scholar
  71. Schelbert S, Aubry S, Burla B, Agne B, Kessler F, Krupinska K, Hörtensteiner S (2009) Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell 21:767–785CrossRefPubMedGoogle Scholar
  72. Seo YS, Kim SJ, Harn CH, Kim WT (2011) Ectopic expression of apple fruit homogentisate phytyltransferase gene (MdHPT1) increases tocopherol in transgenic tomato (Solanum lycopersicum cv. Micro-Tom) leaves and fruits. Phytochemistry 72:321–329CrossRefPubMedGoogle Scholar
  73. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504CrossRefPubMedGoogle Scholar
  74. Shen Q, Ho TH (1995) Functional dissection of an abscisic acid(ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7:295–307PubMedGoogle Scholar
  75. Singh RK, Ali SA, Nath P, Sane VA (2011) Activation of ethylene-responsive p-hydroxyphenylpyruvate dioxygenase leads to increased tocopherol levels during ripening in mango. J Exp Bot 62:3375–3385CrossRefPubMedGoogle Scholar
  76. Swanson CI, Evans NC, Barolo S (2010) Structural rules and complex regulatory circuitry constrain expression of a notch- and EGFR-regulated eye enhancer. Dev Cell 18:359–370CrossRefPubMedGoogle Scholar
  77. Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16:53–60CrossRefPubMedGoogle Scholar
  78. Takeda J, It Y, Maeda K, Ozeki Y (2002) Assignment of UVB-responsive cis-element and protoplastization-(dilution-) and elicitor-responsive ones in the promoter region of a carrot phenylalanine ammonia-lyase Gene (gDcPAL1). Photochem Photobiol 76:232–238CrossRefPubMedGoogle Scholar
  79. Tharakaraman K, Mariño-Ramírez L, Sheetlin S, Landsman D, Spouge JL (2005) Alignments anchored on genomic landmarks can aid in the identification of regulatory elements. Bioinformatics 21(Suppl 1):i440–i448CrossRefPubMedGoogle Scholar
  80. The Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–197CrossRefGoogle Scholar
  81. The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641CrossRefGoogle Scholar
  82. Thijs G, Moreau Y, De Smet F, Mathys J, Lescot M, Rombauts S, Rouze P, De Moor B, Marchal K (2002) INCLUSive: integrated clustering, upstream sequence retrieval and motif sampling. Bioinformatics 18:331–332CrossRefPubMedGoogle Scholar
  83. Tian L, DellaPenna D, Dixon RA (2007) The pds2 mutation is a lesion in the Arabidopsis homogentisate solanesyltransferase gene involved in plastoquinone biosynthesis. Planta 226:1067–1073CrossRefPubMedGoogle Scholar
  84. Traber MG, Sies H (1996) Vitamin E in humans: demand and delivery. Annual Rev Nut 16:321–347CrossRefGoogle Scholar
  85. Tzin V, Malitsky S, Zvi MMB, Bedair M, Sumner L, Aharoni A, Galili G (2012) Expression of a bacterial feedback-insensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway in Arabidopsis elucidates potential metabolic bottlenecks between primary and secondary metabolism. New Phytol 194:301–598CrossRefGoogle Scholar
  86. Valentin HE, Lincoln K, Moshiri F, Jensen PK, Qi Q, Venkatesh TV, Karunanandaa B, Baszis SR, Norris SR, Savidge B, Gruys KJ, Last RL (2006) The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell 18:212–224CrossRefPubMedGoogle Scholar
  87. van Heeringen SJ, Veenstra GJ (2011) GimmeMotifs: a de novo motif prediction pipeline for ChIP-sequencing experiments. Bioinformatics 27:270–271CrossRefPubMedGoogle Scholar
  88. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3. RESEARCH0034Google Scholar
  89. Vranová E, Coman D, Gruissem W (2012) Structure and dynamics of the isoprenoid pathway network. Molecular Plant 5:318–333CrossRefPubMedGoogle Scholar
  90. Williams CE, St. Clair DA (1993) Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Genome 36:619–630CrossRefPubMedGoogle Scholar
  91. Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493CrossRefPubMedGoogle Scholar
  92. Witcombe JR, Gilani MM (1979) Variation in cereals from the Himalayas and the optimum strategy for sampling germplasm. J Appl Ecol 16:633–640CrossRefGoogle Scholar
  93. Wittkopp PJ, Kalay G (2012) Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet 13:59–69CrossRefGoogle Scholar
  94. Yelle S, Chetelat RT, Dorais M, Deverna JW, Bennett AB (1991) Sink metabolism in tomato fruit. IV. Genetic and biochemical analysis of sucrose accumulation. Plant Physiol 95:1026–1035CrossRefPubMedGoogle Scholar
  95. Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L, Grotewold E (2011) AGRIS: the Arabidopsis Gene Regulatory Information Server, an update. Nucleic Acids Res 39 (database issue)Google Scholar
  96. Zbierzak AM, Kanwischer M, Wille C, Vidi PA, Giavalisco P, Lohmann A, Briesen I, Porfirova S, Bréhélin C, Kessler F, Dörmann P (2009) Intersection of the tocopherol and plastoquinol metabolic pathways at the plastoglobule. Biochem J 425:389–399CrossRefPubMedGoogle Scholar
  97. Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4. Article 17Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Leandro Quadrana
    • 1
  • Juliana Almeida
    • 2
  • Santiago N. Otaiza
    • 3
  • Tomas Duffy
    • 1
  • Junia V. Corrêa da Silva
    • 2
  • Fabiana de Godoy
    • 2
  • Ramon Asís
    • 3
  • Luisa Bermúdez
    • 2
  • Alisdair R. Fernie
    • 4
  • Fernando Carrari
    • 1
  • Magdalena Rossi
    • 2
  1. 1.Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria and Consejo Nacional de Investigaciones Científicas y TécnicasCastelarArgentina
  2. 2.Departamento de Botânica, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
  3. 3.CIBICI, Facultad de Ciencias QuímicasUniversidad Nacional de CórdobaCórdobaArgentina
  4. 4.Max Planck Institute for Molecular Plant PhysiologyPotsdam-GolmGermany

Personalised recommendations