Skip to main content
Log in

ppGpp inhibits peptide elongation cycle of chloroplast translation system in vitro

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Chloroplasts possess common biosynthetic pathways for generating guanosine 3′,5′-(bis)pyrophosphate (ppGpp) from GDP and ATP by RelA-SpoT homolog enzymes. To date, several hypothetical targets of ppGpp in chloroplasts have been suggested, but they remain largely unverified. In this study, we have investigated effects of ppGpp on translation apparatus in chloroplasts by developing in vitro protein synthesis system based on an extract of chloroplasts isolated from pea (Pisum sativum). The chloroplast extracts showed stable protein synthesis activity in vitro, and the activity was sensitive to various types of antibiotics. We have demonstrated that ppGpp inhibits the activity of chloroplast translation in dose-effective manner, as does the toxic nonhydrolyzable GTP analog guanosine 5′-(β,γ-imido)triphosphate (GDPNP). We further examined polyuridylic acid-directed polyphenylalanine synthesis as a measure of peptide elongation activity in the pea chloroplast extract. Both ppGpp and GDPNP as well as antibiotics, fusidic acid and thiostrepton, inhibited the peptide elongation cycle of the translation system, but GDP in the similar range of the tested ppGpp concentration did not affect the activity. Our results thus show that ppGpp directly affect the translation system of chloroplasts, as they do that of bacteria. We suggest that the role of the ppGpp signaling system in translation in bacteria is conserved in the translation system of chloroplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akkaya MS, Welcsh PL, Wolfe MA, Duerr BK, Becktel WJ, Breitenberger CA (1994) Purification and N-terminal sequence analysis of pea chloroplast protein synthesis factor EF-G. Arch Biochem Biophys 308:109–117

    Article  PubMed  CAS  Google Scholar 

  • Beligni MV, Yamaguchi K, Mayfield SP (2004) Chloroplast elongation factor ts pro-protein is an evolutionarily conserved fusion with the s1 domain-containing plastid-specific ribosomal protein-7. Plant Cell 16:3357–3369

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya D, Yoon HS, Hackett JD (2004) Photosynthetic eukaryotes unite: endosymbiosis connects the dots. Bioessays 26:50–60

    Article  PubMed  Google Scholar 

  • Braeken K, Moris M, Daniels R, Vanderleyden J, Michiels J (2006) New horizons for (p)ppGpp in bacterial and plant physiology. Trends Microbiol 14:45–54

    Article  PubMed  CAS  Google Scholar 

  • Campos F, Garcia-Gomez BI, Solorzano RM, Salazar E, Estevez J, Leon P, Alvarez-Buylla ER, Covarrubias AA (2001) A cDNA for nuclear-encoded chloroplast translational initiation factor 2 from a higher plant is able to complement an infB Escherichia coli null mutant. J Biol Chem 276:28388–28394

    Article  PubMed  CAS  Google Scholar 

  • Cashel M, Kalbacher B (1970) The control of ribonucleic acid synthesis in Escherichia coli. J Biol Chem 245:2309–2318

    PubMed  CAS  Google Scholar 

  • Cashel M, Gentry DR, Hernandez VJ, Vinella D (1996) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. ASM Press, Washington, pp 1458–1496

    Google Scholar 

  • Conte S, Stevenson D, Furner I, Lloyd A (2009) Multiple antibiotic resistance in Arabidopsis is conferred by mutations in a chloroplast-localized transport protein. Plant Physiol 151:559–573

    Article  PubMed  CAS  Google Scholar 

  • Dalebroux ZD, Svensson SL, Gaynor EC, Swanson MS (2010) ppGpp conjures bacterial virulence. Microbiol Mol Biol Rev 74:171–199

    Article  PubMed  CAS  Google Scholar 

  • Day A, Goldschmidt-Clermont M (2011) The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnol J 9:540–553

    Article  PubMed  CAS  Google Scholar 

  • Eichacker LA, Soll J, Lauterbach P, Rudiger W, Klein RR, Mullet JE (1990) In vitro synthesis of chlorophyll a in the dark triggers accumulation of chlorophyll a apoproteins in barley etioplasts. J Biol Chem 265:13566–13571

    PubMed  CAS  Google Scholar 

  • Ellis RJ (1969) Chloroplast ribosomes: stereospecificity of inhibition by chloramphenicol. Science 163:477–478

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ (1971) Lincomycin as a chloroplast probe. Biochem J 124:52P–53P

    PubMed  CAS  Google Scholar 

  • Fish LE, Jagendorf AT (1982) High rates of protein synthesis by isolated chloroplasts. Plant Physiol 70:1107–1114

    Article  PubMed  CAS  Google Scholar 

  • Gao YG, Selmer M, Dunham CM, Weixlbaumer A, Kelley AC, Ramakrishnan V (2009) The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326:694–699

    Article  PubMed  CAS  Google Scholar 

  • Givens RM, Lin MH, Taylor DJ, Mechold U, Berry JO, Hernandez VJ (2004) Inducible expression, enzymatic activity, and origin of higher plant homologues of bacterial RelA/SpoT stress proteins in Nicotiana tabacum. J Biol Chem 279:7495–7504

    Article  PubMed  CAS  Google Scholar 

  • Hamel E, Cashel M (1973) Role of guanine nucleotides in protein synthesis. Elongation factor G and guanosine 5′-triphosphate, 3′-diphosphate. Proc Natl Acad Sci U S A 70:3250–3254

    Article  PubMed  CAS  Google Scholar 

  • Hamel E, Cashel M (1974) Guanine nucleotides in protein synthesis. Utilization of pppGpp and dGTP by initiation factor 2 and elongation factor Tu. Arch Biochem Biophys 162:293–300

    Article  PubMed  CAS  Google Scholar 

  • Harms JM, Wilson DN, Schluenzen F, Connell SR, Stachelhaus T, Zaborowska Z, Spahn CM, Fucini P (2008) Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin. Mol Cell 30:26–38

    Article  PubMed  CAS  Google Scholar 

  • Harris EH, Boynton JE, Gillham NW (1994) Chloroplast ribosomes and protein synthesis. Microbiol Rev 58:700–754

    PubMed  CAS  Google Scholar 

  • Hernandez Torres J, Breitenberger CA, Spielmann A, Stutz E (1993) Cloning and sequencing of a soybean nuclear gene coding for a chloroplast translation elongation factor EF-G. Biochim Biophys Acta 1174:191–194

    PubMed  CAS  Google Scholar 

  • Hirose T, Sugiura M (1996) Cis-acting elements and trans-acting factors for accurate translation of chloroplast psbA mRNAs: development of an in vitro translation system from tobacco chloroplasts. EMBO J 15:1687–1695

    PubMed  CAS  Google Scholar 

  • Hurewitz J, Jagendorf AT (1987) Further characterization of ribosome binding to thylakoid membranes. Plant Physiol 84:31–34

    Article  PubMed  CAS  Google Scholar 

  • Kasai K, Usami S, Yamada T, Endo Y, Ochi K, Tozawa Y (2002) A RelA-SpoT homolog (Cr-RSH) identified in Chlamydomonas reinhardtii generates stringent factor in vivo and localizes to chloroplasts in vitro. Nucleic Acids Res 30:4985–4992

    Article  PubMed  CAS  Google Scholar 

  • Kasai K, Kanno T, Endo Y, Wakasa K, Tozawa Y (2004) Guanosine tetra- and pentaphosphate synthase activity in chloroplasts of a higher plant: association with 70S ribosomes and inhibition by tetracycline. Nucleic Acids Res 32:5732–5741

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Eichacker LA, Rudiger W, Mullet JE (1994) Chlorophyll regulates accumulation of the plastid-encoded chlorophyll proteins P700 and D1 by increasing apoprotein stability. Plant Physiol 104:907–916

    Article  PubMed  CAS  Google Scholar 

  • Legault L, Jeantet C, Gros F (1972) Inhibition of in vitro protein synthesis by ppGpp. FEBS Lett 27:71–75

    Article  PubMed  CAS  Google Scholar 

  • Lemke JJ, Sanchez-Vazquez P, Burgos HL, Hedberg G, Ross W, Gourse RL (2011) Direct regulation of Escherichia coli ribosomal protein promoters by the transcription factors ppGpp and DksA. Proc Natl Acad Sci U S A 108:5712–5717

    Article  PubMed  CAS  Google Scholar 

  • Magnusson LU, Farewell A, Nystrom T (2005) ppGpp: a global regulator in Escherichia coli. Trends Microbiol 13:236–242

    Article  PubMed  CAS  Google Scholar 

  • Masuda S, Mizusawa K, Narisawa T, Tozawa Y, Ohta H, Takamiya K (2008a) The bacterial stringent response, conserved in chloroplasts, controls plant fertilization. Plant Cell Physiol 49:135–141

    Article  PubMed  CAS  Google Scholar 

  • Masuda S, Tozawa Y, Ohta H (2008b) Possible targets of “magic spots” in plant signalling. Plant Signal Behav 3:1021–1023

    PubMed  Google Scholar 

  • Milon P, Tischenko E, Tomsic J, Caserta E, Folkers G, La Teana A, Rodnina MV, Pon CL, Boelens R, Gualerzi CO (2006) The nucleotide-binding site of bacterial translation initiation factor 2 (IF2) as a metabolic sensor. Proc Natl Acad Sci USA 103:13962–13967

    Article  PubMed  CAS  Google Scholar 

  • Mitkevich VA, Ermakov A, Kulikova AA, Tankov S, Shyp V, Soosaar A, Tenson T, Makarov AA, Ehrenberg M, Hauryliuk V (2010) Thermodynamic characterization of ppGpp binding to EF-G or IF2 and of initiator tRNA binding to free IF2 in the presence of GDP, GTP, or ppGpp. J Mol Biol 402:838–846

    Article  PubMed  CAS  Google Scholar 

  • Mizusawa K, Masuda S, Ohta H (2008) Expression profiling of four RelA/SpoT-like proteins, homologues of bacterial stringent factors, in Arabidopsis thaliana. Planta 228:553–562

    Article  PubMed  CAS  Google Scholar 

  • Murayama Y, Matsubayashi T, Sugita M, Sugiura M (1993) Purification of chloroplast elongation factor Tu and cDNA analysis in tobacco: the existence of two chloroplast elongation factor Tu species. Plant Mol Biol 22:767–774

    Article  PubMed  CAS  Google Scholar 

  • Nagaev I, Bjorkman J, Andersson DI, Hughes D (2001) Biological cost and compensatory evolution in fusidic acid-resistant Staphylococcus aureus. Mol Microbiol 40:433–439

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD, Thompson WF (1981) Rearrangements in the chloroplast genome of mung bean and pea. Proc Natl Acad Sci USA 78:5533–5537

    Article  PubMed  CAS  Google Scholar 

  • Potrykus K, Cashel M (2008) (p)ppGpp: still magical? Annu Rev Microbiol 62:35–51

    Article  PubMed  CAS  Google Scholar 

  • Rodnina MV, Savelsbergh A, Matassova NB, Katunin VI, Semenkov YP, Wintermeyer W (1999) Thiostrepton inhibits the turnover but not the GTPase of elongation factor G on the ribosome. Proc Natl Acad Sci USA 96:9586–9590

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Takahashi K, Ochiai Y, Hosaka T, Ochi K, Nabeta K (2009) Bacterial alarmone, guanosine 5′-diphosphate 3′-diphosphate (ppGpp), predominantly binds the β’ subunit of plastid-encoded plastid RNA polymerase in chloroplasts. Chembiochem 10:1227–1233

    Article  PubMed  CAS  Google Scholar 

  • Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19:751–755

    Article  PubMed  CAS  Google Scholar 

  • Sreedharan SP, Spremulli LL (1985) Euglena gracilis chloroplast elongation factor Tu. Interaction with guanine nucleotides and aminoacyl-tRNA. J Biol Chem 260:8771–8776

    PubMed  CAS  Google Scholar 

  • Srivatsan A, Wang JD (2008) Control of bacterial transcription, translation and replication by (p)ppGpp. Curr Opin Microbiol 11:100–105

    Article  PubMed  CAS  Google Scholar 

  • Stern DS, Higgs DC, Yang J (1997) Transcription and translation in chloroplasts. Trends Plant Sci 2:308–315

    Article  Google Scholar 

  • Sugiura M, Hirose T, Sugita M (1998) Evolution and mechanism of translation in chloroplasts. Annu Rev Genet 32:437–459

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Kasai K, Ochi K (2004) Identification of the bacterial alarmone guanosine 5′-diphosphate 3′-diphosphate (ppGpp) in plants. Proc Natl Acad Sci U S A 101:4320–4324

    Article  PubMed  CAS  Google Scholar 

  • Ticu C, Murataliev M, Nechifor R, Wilson KS (2011) A central interdomain protein joint in elongation factor G regulates antibiotic sensitivity, GTP hydrolysis, and ribosome translocation. J Biol Chem 286:21697–21705

    Article  PubMed  CAS  Google Scholar 

  • Tozawa Y, Nomura Y (2011) Signalling by the global regulatory molecule ppGpp in bacteria and chloroplasts of land plants. Plant Biol (Stuttg) 13:699–709

    Article  CAS  Google Scholar 

  • Tozawa Y, Nozawa A, Kanno T, Narisawa T, Masuda S, Kasai K, Nanamiya H (2007) Calcium-activated (p)ppGpp synthetase in chloroplasts of land plants. J Biol Chem 282:35536–35545

    Article  PubMed  CAS  Google Scholar 

  • Ursin VM, Becker CK, Shewmaker CK (1993) Cloning and nucleotide sequence of a tobacco chloroplast translational elongation factor, EF-Tu. Plant Physiol 101:333–334

    Article  PubMed  CAS  Google Scholar 

  • van der Biezen EA, Sun J, Coleman MJ, Bibb MJ, Jones JD (2000) Arabidopsis RelA/SpoT homologs implicate (p)ppGpp in plant signaling. Proc Natl Acad Sci U S A 97:3747–3752

    Article  PubMed  Google Scholar 

  • Yamaguchi K, Subramanian AR (2000) The plastid ribosomal proteins. Identification of all the proteins in the 50 S subunit of an organelle ribosome (chloroplast). J Biol Chem 275:28466–28482

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, von Knoblauch K, Subramanian AR (2000) The plastid ribosomal proteins. Identification of all the proteins in the 30 S subunit of an organelle ribosome (chloroplast). J Biol Chem 275:28455–28465

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Travers A, Clark BF (1972) Inhibition of translation initiation complex formation by MS1. FEBS Lett 23:163–166

    Article  PubMed  CAS  Google Scholar 

  • Yukawa M, Kuroda H, Sugiura M (2007) A new in vitro translation system for non-radioactive assay from tobacco chloroplasts: effect of pre-mRNA processing on translation in vitro. Plant J 49:367–376

    Article  PubMed  CAS  Google Scholar 

  • Zerges W (2000) Translation in chloroplasts. Biochimie 82:583–601

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor M. Sugiura (Nagoya University) for critical comments, R. Uno for technical assistance and members of the Cell-Free Science and Technology Research Center of Ehime University for many helpful discussions. This work was supported by a grant-in-aid for Scientific Research (no. 21570047 to Y.T.) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzuru Tozawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nomura, Y., Takabayashi, T., Kuroda, H. et al. ppGpp inhibits peptide elongation cycle of chloroplast translation system in vitro. Plant Mol Biol 78, 185–196 (2012). https://doi.org/10.1007/s11103-011-9858-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-011-9858-x

Keywords

Navigation