Skip to main content
Log in

Deficiency in riboflavin biosynthesis affects tetrapyrrole biosynthesis in etiolated Arabidopsis tissue

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Tetrapyrrole biosynthesis is controlled by multiple environmental and endogenous cues. Etiolated T-DNA insertion mutants were screened for red fluorescence as result of elevated levels of protochlorophyllide and four red fluorescent in the dark (rfd) mutants were isolated and identified. rfd3 and rfd4 belong to the group of photomorphogenic cop/det/fus mutants. rfd1 and rfd2 had genetic lesions in RIBA1 and FLU encoding the dual-functional protein GTP cyclohydrolase II/3,4-dihydroxy-2-butanone-4-phosphate synthase and a negative regulator of tetrapyrrole biosynthesis, respectively. RIBA1 catalyses the initial reaction of the metabolic pathway of riboflavin biosynthesis and rfd1 contains reduced contents of riboflavin and the flavo-coenzymes FMN and FAD. Transcriptome analysis of rfd1 revealed up-regulated genes encoding nucleus-localized factors involved in cytokinin signalling and numerous down-regulated LEA genes as well as an auxin-inducible GH3 gene. Alteration of cytokinin metabolism of rfd1was confirmed by elevated contents of active forms of cytokinin and stimulated expression of an ARR6::GUS reporter construct. An etiolated quadruple ckx (cytokinin oxidase) mutant with impaired cytokinin degradation as well as different knockout mutants for the negative AUX/IAA regulators shy2-101 (iaa3), axr2-1 (iaa7) and slr-1 (iaa14) showed also excessive protochlorophyllide accumulation. The transcript levels of CHLH and HEMA1 encoding Mg chelatase and glutamyl-tRNA reductase were increased in rfd1 and the AUX/IAA loss-of-function mutants. It is proposed that reduced riboflavin synthesis impairs the activity of the flavin-containing cytokinin oxidase, increases cytokinin contents and de-represses synthesis of 5-aminolevulinic acid of tetrapyrrole metabolism in darkness. As result of the mutant analyses, the antagonistic cytokinin and auxin signalling is required for a balanced tetrapyrrole biosynthesis in the dark.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DBPS:

3,4-dihydroxy-2-butanone-4-phosphate synthase

GCHII:

GTP cyclohydrolase II

GluTR:

Glutamyl-tRNA reductase

GSAT:

Glutamate-1-semialdehyde aminotransferase

MgProto:

Magnesium protoporphyrin

Pchlide:

Protochlorophyllide

POR:

Protochlorophyllide oxidoreductase

Proto:

Protoporphyrin IX

References

  • Alawady A, Grimm B (2005) Tobacco Mg protoporphyrin IX Methyltransferase is involved in inverse activation of Mg porphyrin and protoheme synthesis. Plant J 41:282–290

    Article  PubMed  CAS  Google Scholar 

  • Albacete A, Ghanem ME, Martinez-Andujar C, Acosta M, Sanchez-Bravo J, Martinez V, Lutts E, Dodd IC, Perez-Alfocea F (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 59:4119–4131

    Article  PubMed  CAS  Google Scholar 

  • Bacher A, Eberhardt S, Fischer M, Kis K, Richter G (2000) Biosynthesis of vitamin b2 (riboflavin). Annu Rev Nutr 20:153–167

    Article  PubMed  CAS  Google Scholar 

  • Barnes SA, Quaggio RB, Whitelam GC, Chua NH (1996) fhy1 defines a branch point in phytochrome A signal transduction pathways for gene expression. Plant J 10:1155–1161

    Article  PubMed  CAS  Google Scholar 

  • Beck C, Grimm B (2006) Involvement of tetrapyrroles in cellular regulation. In: Grimm B, Porra R, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Advances in photosynthesis and respiration, vol 25. Springer, Dordrech, pp 223–235

    Google Scholar 

  • Bougri O, Grimm B (1996) Members of a low-copy number gene family encoding glutamyl-tRNA reductase are differentially expressed in barley. Plant J 9:867–878

    Article  PubMed  CAS  Google Scholar 

  • Brenner WG, Romanov GA, Köllmer I, Bürkle L, Schmülling T (2005) Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. Plant J 44:314–333

    Article  PubMed  CAS  Google Scholar 

  • Cervera M (2005) Histochemical and fluorometric assays for uidA (GUS) gene detection. In: Pena L (ed) Methods in molecular biology, vol 286. Humana Press, Totowa, N.J., pp 203–213

    Google Scholar 

  • Cheminant S, Wild M, Bouvier F, Pelletier S, Renou JP, Erhardt M, Hayes S, Terry MJ, Genschik P, Achard P (2011) DELLAs regulate chlorophyll and carotenoid biosynthesis to prevent photooxidative damage during seedling Deetiolation in arabidopsis. Plant Cell 23:1849–1860

    Article  PubMed  CAS  Google Scholar 

  • Chory J, Reinecke D, Sim S, Washburn T, Brenner M (1994) A role for cytokinins in De-etiolation in arabidopsis (det Mutants Have an altered response to cytokinins). Plant Physiol 104:339–347

    PubMed  CAS  Google Scholar 

  • Coenen C, Lomax TL (1997) Auxin-cytokinin interactions in higher plants: old problems and new tools. Trends Plant Sci 2:351–356

    Article  PubMed  CAS  Google Scholar 

  • Czechowski T, Bari RP, Stitt M, Scheible WR, Udvardi MK (2004) Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant J 38:366–379

    Article  PubMed  CAS  Google Scholar 

  • D’Agostino IB, Deruere J, Kieber JJ (2000) Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol 124:1706–1717

    Article  PubMed  Google Scholar 

  • Davison PA, Schubert HL, Reid JD, Iorg CD, Heroux A, Hill CP, Hunter CN (2005) Structural and biochemical characterization of Gun4 suggests a mechanism for its role in chlorophyll biosynthesis. Biochemistry 44:7603–7612

    Article  PubMed  CAS  Google Scholar 

  • Ferreira FJ, Kieber JJ (2005) Cytokinin signaling. Curr Opin Plant Bio 8:518–525

    Article  CAS  Google Scholar 

  • Fischer M, Romisch W, Saller S, Illarionov B, Richter G, Rohdich F, Eisenreich W, Bacher A (2004) Evolution of vitamin B2 biosynthesis: structural and functional similarity between pyrimidine deaminases of eubacterial and plant origin. J Biol Chem 279:36299–36308

    Article  PubMed  CAS  Google Scholar 

  • Fischer M, Haase I, Feicht R, Schramek N, Köhler P, Schieberle P, Bacher A (2005) Evolution of vitamin B2 biosynthesis: riboflavin synthase of Arabidopsis thaliana and its inhibition by riboflavin. Biol Chem 386:417–428

    Article  PubMed  CAS  Google Scholar 

  • Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29:153–168

    Article  PubMed  CAS  Google Scholar 

  • Giancaspero TA, Locato V, de Pinto MC, De Gara L, Barile M (2009) The occurrence of riboflavin kinase and FAD synthetase ensures FAD synthesis in tobacco mitochondria and maintenance of cellular redox status. FEBS J 276:219–231

    Article  PubMed  CAS  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385

    Article  PubMed  CAS  Google Scholar 

  • Hardtke CS, Deng XW (2000) The cell biology of the COP/DET/FUS proteins. Regulating proteolysis in photomorphogenesis and beyond? Plant Physiol 124:1548–1557

    Article  PubMed  CAS  Google Scholar 

  • Hare PD, van Staden J (1994) Cytokinin oxidase–biochemical features and physiological significance. Physiol Plant 91:128–136

    Article  CAS  Google Scholar 

  • Hedtke B, Grimm B (2009) Silencing of a plant gene by transcriptional interference. Nucleic Acids Res 37:3739–3746

    Article  PubMed  CAS  Google Scholar 

  • Hedtke B, Alawady A, Chen S, Börnke F, Grimm B (2007) Silencing of glutamyl-tRNA reductase by HEMA RNAi represses activity of Mg Chelatase and ferrochelatase in nicotiana tabacum. Plant Mol Biol 64:733–742

    Article  PubMed  CAS  Google Scholar 

  • Herz S, Eberhardt S, Bacher A (2000) Biosynthesis of riboflavin in plants. The ribA gene of Arabidopsis thaliana specifies a bifunctional GTP cyclohydrolase II/3, 4-dihydroxy-2-butanone 4-phosphate synthase. Phytochemistry 53:723–731

    Article  PubMed  CAS  Google Scholar 

  • Higuchi M, Pischke MS, Mähönen AP, Miyawaki K, Hashimoto Y, Seki M, Kobayashi M, Shinozaki K, Kato T, Tabata S, Helariutta Y, Sussman MR, Kakimoto T (2004) In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci USA 101:8821–8826

    Article  PubMed  CAS  Google Scholar 

  • Jordan DB, Bacot KO, Carlson TJ, Kessel M, Viitanen PV (1999) Plant riboflavin biosynthesis. Cloning, chloroplast localization, expression, purification, and partial characterization of spinach lumazine synthase. J Biol Chem 274:22114–22121

    Article  PubMed  CAS  Google Scholar 

  • Kim BC, Soh MC, Kang BJ, Furuya M, Nam HG (1996) Two dominant photomorphogenic mutations of Arabidopsis thaliana identified as suppressor mutations of hy2. Plant J 9:441–456

    Article  PubMed  CAS  Google Scholar 

  • Kuderova A, Urbankova I, Valkova M, Malbeck J, Brzobohaty B, Nemethova D, Hejatko J (2008) Effects of conditional IPT-dependent cytokinin overproduction on root architecture of Arabidopsis seedlings. Plant Cell Physiol 49:570–582

    Article  PubMed  CAS  Google Scholar 

  • Larkin RM, Alonso JM, Ecker JR, Chory J (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signalling. Science 299:902–906

    Article  PubMed  CAS  Google Scholar 

  • Lee DJ, Park JY, Ku SJ, Ha YM, Kim S, Kim MD, Oh MH, Kim J (2007) Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7 (ARR7) overexpression in cytokinin response. Mol Genet Genomics 277:15–37

    Article  Google Scholar 

  • Martens JA, Laprade L, Winston F (2004) Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature 429:571–574

    Article  PubMed  CAS  Google Scholar 

  • Masuda T, Fujita Y (2008) Regulation and evolution of chlorophyll metabolism. Photochem Photobiol Sci 7:1131–1149

    Article  PubMed  CAS  Google Scholar 

  • Masuda T, Tanaka R, Shio Y, Takamiya K, Kannangara CG, Tsuji H (1994) Mechanism of benzyladenine-induced stimulation of the synthesis of 5-aminolevulinic acid in greening Cucumber cotyledons- Benzyladenine increases levels of plastids transfer RNA(Glu). Plant Cell Physiol 35:183–188

    CAS  Google Scholar 

  • McCormac AC, Terry MJ (2002) Light-signalling pathways leading to the co-ordinated expression of HEMA1 and Lhcb during chloroplast development in Arabidopsis thaliana. Plant J 32:549–559

    Article  PubMed  CAS  Google Scholar 

  • Medford JI, Horgan R, El-Sawi Z, Klee HJ (1989) Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene. Plant Cell 1:403–413

    Article  PubMed  CAS  Google Scholar 

  • Meskauskiene R, Nata M, Goslings D, Kessler F, op den Camp R, Apel K (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:12826–12831

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci USA 98:2053–2058

    Article  PubMed  CAS  Google Scholar 

  • Moubayidin L, Di Mambro R, Sabatini S (2009) Cytokinin-auxin crosstalk. Trends Plant Sci 14:557–562

    Article  PubMed  CAS  Google Scholar 

  • Müller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453:1094–1097

    Article  PubMed  Google Scholar 

  • Mýtinová Z, Motyka V, Haisel D, Gaudinová A, Lubovská Z, Wilhelmová N (2010) Effect of abiotic stresses on the activity of antioxidative enzymes and contents of phytohormones in wild type and AtCKX2 transgenic tobacco plants. Biologia Plantarum 58:461–470

    Article  Google Scholar 

  • Nagpal P, Walker LM, Young JC, Sonawala A, Timpte C, Estelle M, Reed JW (2000) AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol 123:563–574

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  PubMed  CAS  Google Scholar 

  • Nott A, Jung HS, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signalling. Annu Rev Plant Biol 57:739–759

    Article  PubMed  CAS  Google Scholar 

  • Papenbrock J, Mock HP, Tanaka R, Kruse E, Grimm B (2000a) Role of Mg-chelatase activity for the early steps of the tetrapyrrole biosynthetic pathway. Plant Physiol 122:1161–1169

    Article  PubMed  CAS  Google Scholar 

  • Papenbrock J, Pfündel E, Mock HP, Grimm B (2000b) Decreased and increased expression of the subunit CHL I diminishes Mg-chelatase activity and rescues chlorophyll synthesis in transgenic plants. Plant J 22:155–164

    Article  PubMed  CAS  Google Scholar 

  • Paul MJ, Pellny TK (2003) Carbon metabolite feedback regulation of leaf photosynthesis and development. J Exp Bot 54:539–547

    Article  PubMed  CAS  Google Scholar 

  • Peter E, Grimm B (2009) GUN4 is required for posttranslational control of plant tetrapyrrole biosynthesis. Mol Plant 2:1198–1210

    Article  PubMed  CAS  Google Scholar 

  • Rashotte AM, Carson SD, To JP, Kieber JJ (2003) Expression profiling of cytokinin action in Arabidopsis. Plant Physiol 132:1998–2011

    Article  PubMed  CAS  Google Scholar 

  • Rashotte AM, Chae HS, Maxwell BB, Kieber JJ (2005) The interaction of cytokinin with other signals Physiol Plant 123:184–194

    CAS  Google Scholar 

  • Rashotte AM, Mason MG, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2006) A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc Natl Acad Sci USA 103:11081–11085

    Article  PubMed  CAS  Google Scholar 

  • Sandoval FJ, Roje S (2005) An FMN hydrolase is fused to a riboflavin kinase homolog in plants. J Biol Chem 280:38337–38345

    Article  PubMed  CAS  Google Scholar 

  • Sandoval FJ, Zhang Y, Roje S (2008) Flavin nucleotide metabolism in plants: monofunctional enzymes synthesize fad in plastids. J Biol Chem 283:30890–30900

    Article  PubMed  CAS  Google Scholar 

  • Schmied J, Hedtke B, Grimm B (2011) Overexpression of HEMA1 encoding glutamyl-tRNA reductase. J Plant Physiol 168:1372–1379

    Article  PubMed  CAS  Google Scholar 

  • Schmülling T, Werner T, Riefler M, Krupková E, Bartrina Y, Manns I (2003) Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J Plant Res 116:241–252

    Article  PubMed  Google Scholar 

  • Sperling U, van Cleve B, Frick G, Apel K, Armstrong GA (1997) Overexpression of light-dependent PORA or PORB in plants depleted of endogenous POR by far-red light enhances seedling survival in white light and protects against photooxidative damage. Plant J 12:649–658

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    Article  PubMed  CAS  Google Scholar 

  • Stephenson PG, Fankhauser C, Terry MJ (2009) PIF3 is a repressor of chloroplast development. Proc Natl Acad Sci USA 106:7654–7659

    Article  PubMed  CAS  Google Scholar 

  • Sun Q, Zybailov B, Majeran W, Friso G, Olinares PD and van Wijk KJ (2009) PPDB, the Plant Proteomics Database at Cornell. Nucleic Acids Res 37 (Database issue) D969-74

  • Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H (2006) Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J 45:1028–1036

    Article  PubMed  CAS  Google Scholar 

  • Timpte C, Wilson AK, Estelle M (1994) The axr2–1 mutation of Arabidopsis thaliana is a gain-of-function mutation that disrupts an early step in auxin response. Genetics 138:1239–1249

    PubMed  CAS  Google Scholar 

  • To JPC, Haberer G, Ferreira FJ, Deruere J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2004) Type-A arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16:658–671

    Article  PubMed  CAS  Google Scholar 

  • Tognetti VB, Palatnik JF, Fillat MF, Melzer M, Hajirezaei MR, Valle EM, Carrillo N (2006) Functional replacement of ferredoxin by a cyanobacterial flavodoxin in tobacco confers broad-range stress tolerance. Plant Cell 18:2035–2050

    Article  PubMed  CAS  Google Scholar 

  • Tran LS, Shinozaki K, Yamaguchi-Shinozaki K (2010) Role of cytokinin responsive two-component system in ABA and osmotic stress signalings. Plant Signal Behav 5:148–150

    Article  PubMed  CAS  Google Scholar 

  • Vavilin DV, Vermaas WF (2002) Regulation of the tetrapyrrole biosynthetic pathway leading to heme and chlorophyll in plants and cyanobacteria. Physiol Plant 115:9–24

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Ma LG, Li JM, Zhao HY, Deng XW (2001) Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294:154–158

    Article  PubMed  CAS  Google Scholar 

  • Wei N, Deng XW (2003) The COP9 signalosome. Annu Rev Cell Dev Biol 19:261–286

    Article  PubMed  CAS  Google Scholar 

  • Wei N, Kwok SF, von Arnim AG, Lee A, McNellis TW, Piekos B, Deng XW (1994) Arabidopsis COP8, COP10, and COP11 genes are involved in repression of photomorphogenic development in darkness. Plant Cell 6:629–643

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Schmülling T (2009) Cytokinin action in plant development. Curr Opin Plant Biol 12:527–538

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Article  PubMed  CAS  Google Scholar 

  • Yaronskaya E, Vershilovskaya I, Poers Y, Alawady AE, Averina N, Grimm B (2006) Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta 224:700–709

    Article  PubMed  CAS  Google Scholar 

  • Yi C, Deng XW (2005) COP1—from plant photomorphogenesis to mammalian tumorigenesis. Trends Cell Biol 15:618–625

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y (2008) The role of local biosynthesis of auxin and cytokinin in plant development. Curr Opin Plant Biol 11:16–22

    Article  PubMed  CAS  Google Scholar 

  • Zhong S, Zhao M, Shi T, Shi H, An F, Zhao Q, Guo H (2009) EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proc Natl Acad Sci USA 106:21431–21436

    Article  PubMed  CAS  Google Scholar 

  • Zubo YO, Yamburenko MV, Selivankina SY, Shakirova FM, Avalbaev AM, Kudryakova NV, Zubkova NK, Liere K, Kulaeva ON, Kusnetsov VV, Börner T (2008) Cytokinin stimulates chloroplast transcription in detached barley leaves. Plant Physiol 148:1082–1093

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Collaborative Research Unit SFB 429 to BG. We are grateful to Thomas Altmann, Leibniz-Institute of Plant Genetics and Crop Plant Research, Gatersleben, for providing the T-DNA-mutagenized seed collection. We are thankful to Hidehiro Fukaki, Kobe University, Kobe, Thomas Schmülling, Free University, Berlin, and Klaus Apel, Rutgers University, Ithaca, for the shy2-101 mutant, the quadruple ckx mutant and the flu mutant, respectively. We thank Markus Fischer, Institute of Food Chemistry, University Hamburg, for fruitful discussion on riboflavin biosynthesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Grimm.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 262 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedtke, B., Alawady, A., Albacete, A. et al. Deficiency in riboflavin biosynthesis affects tetrapyrrole biosynthesis in etiolated Arabidopsis tissue. Plant Mol Biol 78, 77–93 (2012). https://doi.org/10.1007/s11103-011-9846-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-011-9846-1

Keywords

Navigation