Skip to main content
Log in

Activity of transcription factor JACKDAW is essential for SHR/SCR-dependent activation of SCARECROW and MAGPIE and is modulated by reciprocal interactions with MAGPIE, SCARECROW and SHORT ROOT

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Two GRAS family transcription factors, SHORT-ROOT (SHR) and SCARECROW (SCR), are required for ground tissue and quiescent center formation in Arabidopsis roots. The action of SHR and SCR is regulated by two INDETERMINATE DOMAIN (IDD) family proteins, JACKDAW (JKD) and MAGPIE (MGP). Although the reciprocal interaction of these transcription factors is considered to be involved in the modulation of SHR and SCR action by JKD and MGP, the underlying mechanism remains unclear. In this study, we use a transient assay with Arabidopsis culture cells to show that the physical interaction of these transcription factors modulate their transcriptional activity. Transient expression of LUC reporter genes with the proximal sequences upstream from the ATG codon of SCR and MGP in protoplasts were activated by JKD. Moreover, promoter activities were enhanced further by the addition of SHR and SCR to JKD, but not by the combination of SHR and SCR in the absence of JKD. Yeast one-hybrid analysis showed that JKD binds to the SCR and MGP promoter sequences, indicating the existence of another binding sequences of JKD different from the previously determined IDD binding sequence. Our findings suggest that JKD directly regulates SCR and MGP expression in cooperation with SHR, SCR and MGP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119(1):109–120

    Article  PubMed  CAS  Google Scholar 

  • Benfey PN, Linstead PJ, Roberts K, Schiefelbein JW, Hauser MT, Aeschbacher RA (1993) Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119(1):57–70

    PubMed  CAS  Google Scholar 

  • Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, Zhou J, Lindfren O, Moreno-Risueno MA, Vaten A, Thitamadee S, Campilho A, Sebastian J, Bowman JL, Helariutta Y, Benfey PN (2010) Cell signaling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–321

    Article  PubMed  CAS  Google Scholar 

  • Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ, Gallagher KL, Wang JY, Blilou I, Scheres B, Benfey PN (2007) An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316(5823):421–425

    Article  PubMed  CAS  Google Scholar 

  • Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86(3):423–433

    Article  PubMed  CAS  Google Scholar 

  • Heidstra R, Welch D, Scheres B (2004) Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes Dev 18(16):1964–1969

    Article  PubMed  CAS  Google Scholar 

  • Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101(5):555–567

    Article  PubMed  CAS  Google Scholar 

  • Hersh BM, Nelson CE, Stoll SJ, Norton JE, Albert TJ, Carroll SB (2007) The UBX-regulated network in the haltere imaginal disc of D. melanogaster. Dev Biol 302 (2):717–727

    Google Scholar 

  • Ishida T, Hattori S, Sano R, Inoue K, Shirano Y, Hayashi H, Shibata D, Sato S, Kato T, Tabata S, Okada K, Wada T (2007) Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation. Plant Cell 19(8):2531–2543

    Article  PubMed  CAS  Google Scholar 

  • Kozaki A, Hake S, Colasanti J (2004) The maize ID1 flowering time regulator is a zinc finger protein with novel DNA binding properties. Nucleic Acids Res 32(5):1710–1720

    Article  PubMed  CAS  Google Scholar 

  • Levesque MP, Vernoux T, Busch W, Cui H, Wang JY, Blilou I, Hassan H, Nakajima K, Matsumoto N, Lohmann JU, Scheres B, Benfey PN (2006) Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis. PLoS Biol 4(5):e143

    Article  PubMed  Google Scholar 

  • Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, Ishiguro S, Nakamura K (2009) An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J 60(3):476–487

    Article  PubMed  CAS  Google Scholar 

  • Mann RS, Morata G (2000) The developmental and molecular biology of genes that subdivide the body of Drosophila. Annu Rev Cell Dev Biol 16:243–271

    Article  PubMed  CAS  Google Scholar 

  • Miyashima S, Hashimoto T, Nakajima K (2009) ARGONAUTE1 acts in Arabidopsis root radial pattern formation independently of the SHR/SCR pathway. Plant Cell Physiol 50(3):626–634

    Article  PubMed  CAS  Google Scholar 

  • Miyashima S, Koi S, Hashimoto T, Nakajima K (2011) Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root. Development 138:2303–2313

    Article  PubMed  CAS  Google Scholar 

  • Nakajima K, Sena G, Nawy T, Benfey PN (2001) Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413(6853):307–311

    Article  PubMed  CAS  Google Scholar 

  • Oppenheimer DG, Herman PL, Sivakumaran S, Esch J, Marks MD (1991) A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell 67(3):483–493

    Article  PubMed  CAS  Google Scholar 

  • Pan Y, Tsai CJ, Ma B, Nussinov R (2010) Mechanisms of transcription factor selectivity. Trends Genet 26(2):75–83

    Article  PubMed  CAS  Google Scholar 

  • Payne CT, Zhang F, Lloyd AM (2000) GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics 156(3):1349–1362

    PubMed  CAS  Google Scholar 

  • Rerie WG, Feldmann KA, Marks MD (1994) The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis. Genes Dev 8(12):1388–1399

    Article  PubMed  CAS  Google Scholar 

  • Sabatini S, Heidstra R, Wildwater M, Scheres B (2003) SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17(3):354–358

    Article  PubMed  CAS  Google Scholar 

  • Sena G, Jung JW, Benfey PN (2004) A broad competence to respond to SHORT ROOT revealed by tissue-specific ectopic expression. Development 131(12):2817–2826

    Article  PubMed  CAS  Google Scholar 

  • Stobe P, Stein MA, Habring-Muller A, Bezdan D, Fuchs AL, Hueber SD, Wu H, Lohmann I (2009) Multifactorial regulation of a hox target gene. PLoS Genet 5(3):e1000412

    Article  PubMed  Google Scholar 

  • Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC (1999) The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11(7):1337–1350

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Chen JG (2008) Arabidopsis transient expression analysis reveals that activation of GLABRA2 may require concurrent binding of GLABRA1 and GLABRA3 to the promoter of GLABRA2. Plant Cell Physiol 49(12):1792–1804

    Article  PubMed  Google Scholar 

  • Welch D, Hassan H, Blilou I, Immink R, Heidstra R, Scheres B (2007) Arabidopsis JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and stabilize tissue boundaries by restricting SHORT-ROOT action. Genes Dev 21(17):2196–2204

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank K. Maeo and M. Takagi for providing expert technical advice and plasmids, and the RIKEN BioResource Center for Arabidopsis T87 suspension-cultured cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiko Kozaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogasawara, H., Kaimi, R., Colasanti, J. et al. Activity of transcription factor JACKDAW is essential for SHR/SCR-dependent activation of SCARECROW and MAGPIE and is modulated by reciprocal interactions with MAGPIE, SCARECROW and SHORT ROOT. Plant Mol Biol 77, 489 (2011). https://doi.org/10.1007/s11103-011-9826-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11103-011-9826-5

Keywords

Navigation