Skip to main content
Log in

GsTIFY10, a novel positive regulator of plant tolerance to bicarbonate stress and a repressor of jasmonate signaling

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Recent discoveries show that TIFY family genes are plant-specific genes involved in the response to several abiotic stresses, also acting as key regulators of jasmonate signaling in Arabidopsis thaliana. However, there is limited information about this gene family in wild soybean, nor is its role in plant bicarbonate stress adaptation completely understood. Here, we isolated and characterized a novel TIFY family gene, GsTIFY10, from Glycine soja. GsTIFY10 could be induced by bicarbonate, salinity stress and the phytohormone JA, both in the leaves and roots of wild soybean. Over-expression of GsTIFY10 in Arabidopsis resulted in enhanced plant tolerance to bicarbonate stress during seed germination, early seedling and adult seedling developmental stages, and the expression levels of some bicarbonate stress response and stress-inducible marker genes were significantly higher in the GsTIFY10 overexpression lines than in wild-type plants. It was also found that GsTIFY10 could repress JA signal transduction. The roots of plants overexpressing GsTIFY10 grew longer than wild-type in the presence of MeJA, and some JA response and JA biosynthesis marker genes were suppressed in the GsTIFY10 overexpression lines. Subcellular localization studies using a GFP fusion protein showed that GsTIFY10 is localized to the nucleus. These results suggest that the newly isolated wild soybean GsTIFY10 is a positive regulator of plant bicarbonate stress tolerance and is also a repressor of jasmonate signaling, from hormone perception to transcriptional activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alhendawi RA, Römheld V, Kirkby EA, Marschner H (1997) Influence of increasing bicarbonate concentration on plant growth, organic acid accumulation in roots and iron uptake by barley, sorghum and maize. J Plant Nutr 20:1731–1753

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  CAS  Google Scholar 

  • Bailey TL, Boden M, Buske FA et al (2009) MEME Suite: tools for motif discovery and searching. Nucleic Acids Res 37(Web Server issue):W202–W208

    Article  PubMed  CAS  Google Scholar 

  • Bell E, Mullet JE (1993) Characterization of an Arabidopsis lipoxygenase gene responsive to methyl jasmonate and wounding. Plant Physiol 103:1133–1137

    Article  PubMed  CAS  Google Scholar 

  • Benedetti CE, Xie D, Turner JG (1995) Coi1-dependent expression of an Arabidopsis vegetative storage protein in flowers and siliques and in response to coronatine or methyl jasmonate. Plant Physiol 109:567–572

    Article  PubMed  CAS  Google Scholar 

  • Browse J (2005) Jasmonate: an oxylipin signal with many roles in plants. Vitam Horm 72:431–456

    Article  PubMed  CAS  Google Scholar 

  • Casal JJ (2002) Environmental cues affecting development. Curr Opin Plant Biol 5:37–42

    Article  PubMed  Google Scholar 

  • Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signaling. Nature 448:666–671

    Article  PubMed  CAS  Google Scholar 

  • Chung HS, Howe GA (2009) A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis. Plant Cell 21:131–145

    Article  PubMed  CAS  Google Scholar 

  • Chung HS, Koo AJ, Gao X, Jayanty S, Thines B, Jones AD, Howe GA (2008) Regulation and function of Arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory. Plant Physiol 146:952–964

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Conconi A, Smerdon MJ, Howe GA, Ryan CA (1996) The octadecanoid signaling pathway in plants mediates a response to ultraviolet radiation. Nature 383:826–829

    Article  PubMed  CAS  Google Scholar 

  • Davies DD (1986) The fine control of cytosolic pH. Physiol Plant 67:702–706

    Article  CAS  Google Scholar 

  • Devoto A, Turner JG (2003) Regulation of jasmonate-mediated plant responses in Arabidopsis. Ann Bot-London 92(3):329–337

    Article  CAS  Google Scholar 

  • Devoto A, Ellis C, Magusin A, Chang HS, Chilcott C, Zhu T, Turner JG (2005) Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Mol Biol 58:497–513

    Article  PubMed  CAS  Google Scholar 

  • Ellis C, Turner JG (2002) A conditionally fertile coi1 allele indicates cross-talk between plant hormone signaling pathways in Arabidopsis thaliana seeds and young seedlings. Planta 215:549–556

    Article  PubMed  CAS  Google Scholar 

  • Frelin C, Vigne P, Ladoux A, Lazdunski M (1988) The regulation of the intracellular pH in cells from vertebrates. Eur J Biochem 174:3–14

    Article  PubMed  CAS  Google Scholar 

  • Fushimi T, Umeda M, Shimazaki T, Kato A, Toriyama K, Uchimiya H (1994) Nucleotide sequence of a rice cDNA similar to a maize NADP-dependent Malic enzyme. Plant Mol Biol 24:965–967

    Article  PubMed  CAS  Google Scholar 

  • Ge Y, Zhu YM, Lv DK, Dong TT, Wang WS, Tan SJ, Liu CH, Zou P (2009) Research on responses of wild soybean to alkaline stress. Pratacultural Science 26(2):47–52

    CAS  Google Scholar 

  • Ge Y, Li Y, Zhu YM, Bai X, Lv DK, Guo DJ, Ji W, Cai H (2010) Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. BMC Plant Biol 10(1):153

    Article  PubMed  Google Scholar 

  • Gout E, Bligny R, Douce R (1992) Regulation of in tracellular pH values in higher plant cells: carbon-13 and phosphorus-31 nuclear magnetic resonance studies. J Biol Chem 267:13903–13909

    PubMed  CAS  Google Scholar 

  • Hussam HN, Bjarne GH, Morten HH, Jacob KJ, Barbara AH (2006) Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Res 34(18):e122

    Google Scholar 

  • Jiang Y, Deyholos MK (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol 6:25. doi:10.1186/1471-2229-6-25

    Article  PubMed  Google Scholar 

  • Jin H, Plaha P, Park JY, Hong CP, Lee IS, Yang ZH, Jiang GB, Kwak SS, Liu SK, Lee JS, Kim YA, Lim YP (2006) Comparative EST profiles of leaf and root of Leymus chinensis, a xerophilous grass adapted to high pH sodic soil. Plant Sci 170(6):1081–1086

    Article  CAS  Google Scholar 

  • Kanna M, Tamaoki M, Kubo A, Nakajima N, Rakwal R, Agrawal GK, Tamogami S, Ioki M, Ogawa D, Saji H, Aono M (2003) Isolation of an ozone-sensitive and jasmonate-semi-insesitive Arabidopsis mutant (oji1). Plant Cell Physiol 44:1301–1310

    Article  PubMed  CAS  Google Scholar 

  • Kessler A, Halitschke R, Baldwin IT (2004) Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305:665–668

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Dudley J, Nei M, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  PubMed  CAS  Google Scholar 

  • Kurkela S, Franck M (1990) Cloning and characterization of a cold- and ABA-inducible Arabidopsis gene. Plant Mol Biol 15:137–144

    Article  PubMed  CAS  Google Scholar 

  • Laudert D, Weiler EW (1998) Allene oxide synthase: a major control point in Arabidopsis thaliana octadecanoid signaling. Plant J 15:675–684

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Zhu JK (1997) Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Physiol 114:591–596

    Article  PubMed  CAS  Google Scholar 

  • Liu CK, Zhang XX, Chen YX (2004) Is the “plant intracellular pH regulation system” a tolerance mechanism adapting to environmental stress? Molecular Plant Breeding 2(2):179–186

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−△△CT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo O, Solano R (2005) Molecular players regulating the jasmonate signaling network. Curr Opin Plant Biol 8:532–540

    Article  PubMed  CAS  Google Scholar 

  • Major IT, Constabel CP (2006) Molecular analysis of poplar defense against herbivory: comparison of wound-and insect elicitorinduced gene expression. New Phytol 172:617–635

    Article  PubMed  CAS  Google Scholar 

  • Marre E, Ballarin-Denti A (1985) The proton pumps at the plasmalemma and the tonoplast of higher plants. J Bioenerg Biomembr 17:1–21

    Article  PubMed  CAS  Google Scholar 

  • McConn M, Creelman RA, Bell E, Mullet JE, Browse J (1997) Jasmonate is essential for insect defence in Arabidopsis. Proc Natl Acad Sci 94:5473–5477

    Article  PubMed  CAS  Google Scholar 

  • Melotto M, Mecey C, Niu Y, Chung HS, Katsir L, Yao J, Zeng W, Thines B, Staswick P, Browse J, Howe G, He SY (2008) A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine- and jasmonoyl isoleucine-dependent interaction with the COI1 F-box protein. Plant J 55:979–988

    Article  PubMed  CAS  Google Scholar 

  • Mueller LA, Hinz U, Uzé M, Sautter C, Zryd J-P (1997) Biochemical complementation of the betalain biosynthetic pathway in Portulaca grandiflora by a fungal 3, 4-dihydroxyphenylalanine dioxygenase. Planta 203(2):260–263

    Article  CAS  Google Scholar 

  • Nordin K, Vahala T, Palva ET (1993) Differential expression of two related low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant Mol Biol 21:641–653

    Article  PubMed  CAS  Google Scholar 

  • Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, HJr Sandermann, Kangasjarvi J (2000) Ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell 12:1849–1862

    Article  PubMed  CAS  Google Scholar 

  • Penninckx IA, Thomma BP, Buchala A, Metraux JP, Broekaert WF (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103–2113

    Article  PubMed  CAS  Google Scholar 

  • Rajendra BR, Jonathan DG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  Google Scholar 

  • Rao MV et al (2000) Jasmonic acid signaling modulates ozoneinduced hypersensitive cell death. Plant Cell 12:1633–1646

    Article  PubMed  CAS  Google Scholar 

  • Reymond P, Bodenhausen N et al (2004) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16:3132–3147

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  • Sakano K (1998) Revision of biochemical pH-stat: involvement of alternative pathway metabolisms. Plant Cell Physiol 39(5):467–473

    CAS  Google Scholar 

  • Sasaki Y, Asamizu E, Shibata D, Nakamura Y, Kaneko T, Awai K, Amagai M, Kuwata C, Tsugane T, Masuda T, Shimada H, Takamiya X, Ohta H, Tabata S (2001) Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. DNA Res 8:153–161

    Article  PubMed  CAS  Google Scholar 

  • Shikata M, Takemura M, Yokota A, Kohchi T (2003) Arabidopsis ZIM, a plant-specific GATA factor, can function as a transcriptional activator. Biosci Biotechnol Biochem 67:2495–2497

    Article  PubMed  CAS  Google Scholar 

  • Shikata M, Matsuda Y, Ando K, Nishii A, Takemura M, Yokota A, Kohchi T (2004) Characterization of Arabidopsis ZIM, a member of a novel plant-specific GATA factor gene family. J Exp Bot 55:631–639

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE (2008) JAZing up jasmonate signaling. Trends Plant Sci 13:66–71

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Su W, Howell SH (1992) Methyl jasmonat inhibition of root growth and induction of a leaf protein are decrease in an Arabidopsis thaliana mutant. Proc Natl Acad Sci 89:6837–6840

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Yuen GY, Lehman CC (1998) Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. Plant J 15:747–754

    Article  PubMed  CAS  Google Scholar 

  • Tang CX, Robson AD (1993) pH above 6.0 reduces nodulation in Lupinus species. Plant Soil 152(2):269–276

    Article  Google Scholar 

  • Tardien F, Davies WJ (1992) Stomatal response to abscisic acid is a function of current plant water status. Plant Physiol 98:540–545

    Article  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signaling. Nature 448:661–665

    Article  PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckx IAMA, MauchMani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defence-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci 95:15107–15111

    Article  PubMed  CAS  Google Scholar 

  • Torimitsu K, Yazaki Y, Nagasuka K, Ohta E, Sakata M (1984) Effect of external pH on the cytoplasmic and vacuolar pHs in mung bean root-tip cells: a 31P nuclear magnetic-resonance study. Plant Cell Physiol 25(8):1043–1409

    Google Scholar 

  • Troll W, Lindsley J (1955) A photometric method for the determination of proline. J Biol Chem 215:655–660

    PubMed  CAS  Google Scholar 

  • Vanholme B, Grunewald W, Bateman A, Kohchi T, Gheysen G (2007) The TIFY family previously known as ZIM. Trends Plant Sci 12:239–244

    Article  PubMed  CAS  Google Scholar 

  • Vijayan P, Shockey J, Le′vesque CA, Cook RJ, Browse J (1998) A role for jasmonate in pathogen defense of Arabidopsis. Proc Natl Acad Sci 95:7209–7214

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Datla R, Georges F, Loewen M, Cutler AJ (1995) Promoters from kin1 and cor6.6, two homologous Arabidopsis thaliana genes: transcriptional regulation and gene expression induced by low temperature, ABA, osmoticum and dehydration. Plant Mol Biol 28:605–617

    Article  PubMed  CAS  Google Scholar 

  • Wang YN, Liu C, Li KX et al (2007) Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol Biol 64:633–644

    Article  PubMed  CAS  Google Scholar 

  • Wasternack C (2006) Oxilipins: biosynthesis, signal transduction and action. In: Hedden P, Thomas S (eds) Plant hormone signaling. Annual plant reviews. Blackwell Publishing Ltd, Oxford, pp 185–228

    Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100(4):681–697

    Article  PubMed  CAS  Google Scholar 

  • White DWR (2006) PEAPOD regulates lamina size and curvature in Arabidopsis. Proc Natl Acad Sci 103:13238–13243

    Article  PubMed  CAS  Google Scholar 

  • Willems E, Leyns L, Vandesompele J (2008) Standardization of real-time PCR gene expression data from independent biological replicates. Anal Biochem 379:127–129

    Article  PubMed  CAS  Google Scholar 

  • Xu B, Timko MP (2004) Methyljasmonate induced expression of the tobacco putrescine N-methyltransferase genes requires both G-box an GCC-motif elements. Plant Mol Biol 55:743–761

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993a) The plant hormone abscisic acid mediates the drought-induced expression but not the seed-speciWc expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol Gen Genet 238:17–25

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993b) Arabidopsis DNA encoding two desiccation-responsive rd29 genes. Plant Physiol 101:1119–1120

    Article  PubMed  CAS  Google Scholar 

  • Yan Y, Stolz S, Chetelat A, Reymond P, Pagni M, Dubugnon L, Farmer EE (2007) A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19:2470–2483

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Romheld V, Marschner H (1994a) Effect of bicarbonate on root growth and accumulation of organic acids in Zn-inefficient and Zn-efficient rice cultivars (Oryza sativa L.). Plant Soil 164:1–7

    Article  CAS  Google Scholar 

  • Yang X, Römheld V, Marschner H (1994b) Effect of bicarbonate on root growth and accumulation of organic acids in Zn-inefficient and Zn-efficient rice cultivars (Oryza sativa L.). Plant Soil 164:1–7

    Article  CAS  Google Scholar 

  • Ye HY, Du H, Tang N, Li XH, Xiong LZ (2009) Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Mol Biol 71:291–305

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK, Hasegawa PM, Bressan RA (1997) Molecular aspects of osmotic stress in plants. CRC Crit Rev Plant Sci 16:253–277

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30570990, 30471059), the“863” project (2008AA10Z153), National Major Project for Cultivation of Transgenic Crops (2008ZX08004), the Key Research Plan of Heilongjiang Province (GA06B103-3), the Innovation Research Group of NEAU (CXT004), and the Basic Research Preliminary Study Foundation of the Ministry of Science and Technology of the PRC (2003CCA03500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanming Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, D., Bai, X., Chen, C. et al. GsTIFY10, a novel positive regulator of plant tolerance to bicarbonate stress and a repressor of jasmonate signaling. Plant Mol Biol 77, 285–297 (2011). https://doi.org/10.1007/s11103-011-9810-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-011-9810-0

Keywords

Navigation