Skip to main content
Log in

Cis-cinnamic acid-enhanced 1 gene plays a role in regulation of Arabidopsis bolting

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Cis-cinnamic acid (CA) is one of many cis-phenylpropanoids found in both monocots and dicots. It is produced in planta via sunlight-mediated isomerization of trans-cinnamic acid. This pair of isomers plays a differential role in regulation of plant growth. A functional proteomics approach has been adopted to identify genes of cis/trans-CA mixture-enhanced expression. Out of 1,241 proteins identified by mass spectrometry, 32 were CA-enhanced and 13 repressed. Further analysis with the molecular biology approach revealed 2 cis-CA (Zusammen-CA)-Enhanced genes, named ZCE1 and ZCE2, which encode members of the major latex protein-like (MLPL) gene family. The transcript accumulation of both genes is positively correlated with the amount of cis-CA applied externally, ranging from 1 to 100 μM. ZCE1 transcript accumulation is enhanced largely by cis-CA and slightly by other cis-phenylpropanoids. Treatment of several well-characterized plant growth regulator perception-deficient mutants with cis-CA is able to promote ZCE1 transcript accumulation, suggestive of distinct signaling pathways regulating cis-CA response. The zce1 loss-of-function mutant produced via the RNA-interference technique produces an earlier bolting phenotype in Arabidopsis, suggesting that ZCE1 plays a role in promoting vegetative growth and delay flowering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aggelis A, John I, Karvouni Z, Grierson D (1997) Characterization of two cDNA clones for mRNAs expressed during ripening of melon (Cucumis melo L) fruits. Plant Mol Biol 33:313–322

    Article  PubMed  CAS  Google Scholar 

  • Bandurski RS, Schulze A (1974) Concentration of indole-3-acetic acid and its esters in Avena and Zea. Plant Physiol 54:257–262

    Article  PubMed  CAS  Google Scholar 

  • Bandurski RS, Schulze A (1977) Concentration of indole-3-acetic acid and its derivatives in plants. Plant Physiol 60:211–213

    Article  PubMed  CAS  Google Scholar 

  • Bleecker AB, Estelle MA, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089

    Article  PubMed  CAS  Google Scholar 

  • Brabham DE, Giggs RH (1981) Cis-trans photoisomerization of abscisic acid. Photochem Photobiol 34:33–37

    CAS  Google Scholar 

  • Braun J, Tevini M (1993) Regulation of UV-protective pigment synthesis in the epidermal layer of rye seedlings (Secale-Cereale L-Cv Kustro). Photochem Photobiol 57:318–323

    Article  CAS  Google Scholar 

  • Canovas FM, Recorbet EDG, Jorrin J, Mock HP, Rossignol M (2004) Plant proteome analysis. Proteomics 4:285–298

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63

    Article  PubMed  CAS  Google Scholar 

  • Chaves N, Sosa T, Alias JC, Escudero JC (2001) Identification and effects of interaction phytotoxic compounds from exudates of cistus ladanifer leaves. J Chem Ecol 27:611–621

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Bi YR, Li N (2005a) EGY1 encodes a membrane-associated and ATP independent metalloprotease that is required for chloroplast development. Plant J 41:364–375

    Article  PubMed  CAS  Google Scholar 

  • Chen MJ, Vijaykumar V, Lu BW, Xia B, Li N (2005b) Cis- and trans-cinnamic acid have different effects on the catalytic properties of Arabidopsis phenylalanine ammonia lyases PAL1, PAL2 and PAL4. J Integr Plant Biol 47:67–75

    Article  Google Scholar 

  • Chernushevich IV, Loboda AV, Thomson A (2001) An introduction to quadrupole-time-of-flight mass spectrometry. J. Mass Spectr 36:849–865

    Article  CAS  Google Scholar 

  • Chiang HH, Hwang I, Goodman HM (1995) Isolation of the Arabidopsis GA4 locus. Plant Cell 7:195–201

    Article  PubMed  CAS  Google Scholar 

  • Chong J, Pierrel MA, Atanassova R, Werck-Reichhart D, Fritig B, Saindrenan P (2001) Free and conjugated benzoic acid in tobacco plants and cell cultures. Induced accumulation upon elicitation of defense responses and role as salicylic acid precursors. Plant Physiol 125:318–328

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Cochrane FC, Davin LB, Lewis NG (2004) The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochem 65:1557–1564

    Article  CAS  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  PubMed  CAS  Google Scholar 

  • Friedrich H (1976) Phenylpropanoid constituents of essential oils. Lloydia 39:1–7

    PubMed  CAS  Google Scholar 

  • Gray WM, Ostin A, Sanberg G, Romano CP, Estelle M (1998) High temperature promotes auxin-mediated hypocotyls elongation in Arabidopsis. Proc Natl Acad Sci USA 95:7197–7202

    Article  PubMed  CAS  Google Scholar 

  • Guzman P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523

    Article  PubMed  CAS  Google Scholar 

  • Hahlbrock K, Scheel D (1989) Physiology and molecular-biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40:347–369

    Article  CAS  Google Scholar 

  • Hall AE, Bleecker AB (2003) Analysis of combinatorial loss-of-function mutants in the Arabidopsis ethylene receptors reveals that the ers1 etr1 double mutant has severe developmental defects that are EIN2 dependent. Plant Cell 15:2032–2041

    Article  PubMed  CAS  Google Scholar 

  • Haskins FA, Williams LG, Gorz HJ (1964) Light-induced trans to cis conversion of β-D-glucosl o-hydroxycinnamic acid in Melilotus alba leaves. Plant Physiol 39:777–781

    Article  PubMed  CAS  Google Scholar 

  • Herde O, Pena CH, Wasternack C, Willmitzer L, Fisahn J (1999) Electric signaling and pin2 gene expression on different abiotic stimuli depend on a distinct threshold level of endogenous abscisic acid in several abscisic acid-deficient tomato mutants. Plant Physiol 119:213–218

    Article  PubMed  CAS  Google Scholar 

  • Hiradate S, Morita S, Furubayashi A, Fujii Y, Harada J (2005) Plant growth inhibition by cis-cinnamoyl glucosides and cis-cinnamic acid. J Chem Ecol 31:591–601

    Article  PubMed  CAS  Google Scholar 

  • Humphreys JM, Chapple C (2002) Rewriting the lignin roadmap. Curr Opin Plant Biol 5:224–229

    Article  PubMed  CAS  Google Scholar 

  • Jones CS, Davies HV, McNicol RJ, Taylor MA (1998) Cloning of three genes up-regulated in ripening raspberry fruit (Rubus idaeus cv. Glen clova). J Plant Physiol 153:643–648

    CAS  Google Scholar 

  • Kasahara H, Takei K, Ueda N, Hishiyama S, Yamaya T, Kamiya Y, Yamaguchi S, Sakakibara H (2004) Distinct isoprenoid origins of cis- and trans-zeatin biosyntheses in Arabidopsis. J Biol Chem 279:14049–14054

    Article  PubMed  CAS  Google Scholar 

  • Kebarle P (2000) A brief overview of the present status of the mechanisms involved in electrospray mass spectrometry. J Mass Spectrom 35:804–817

    Article  PubMed  CAS  Google Scholar 

  • Klepacka J, Fornal L (2006) Ferulic acid and its position among the phenolic compounds of wheat. Crit Rev Food Sci Nutr 46:639–647

    Article  PubMed  CAS  Google Scholar 

  • Koepfli JB, Thimann KV, Went FW (1937) Plant hormones: structure and physiology activity. J Biol Chem 12:763–779

    Google Scholar 

  • Laby RG, Kincaid MS, Kim D, Gilbson SI (2000) The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J 23:587–596

    Article  PubMed  CAS  Google Scholar 

  • LeClere S, Schmelz EA, Chourey PS (2007) Cell wall invertase-deficient miniature1 kernels have altered phytohormone levels. Phytochem 69:692–699

    Article  Google Scholar 

  • Lee HI, Leon J, Raskin I (1995) Biosynthesis and metabolism of salicylic acid. Proc Natl Acad Sci USA 92:4076–4079

    Article  PubMed  CAS  Google Scholar 

  • Leyser HMO, Lincoln Ca, Timpte C, Lammer D, Turner J, Estelle M (1993) Arabidopsis auxin-resistance gene-Axr1 encodes a protein related to ubiquitin-activating enzyme-E1. Nature 364:161–164

    Article  PubMed  CAS  Google Scholar 

  • Li X, Gerber SA, Rudner AD, Beausoleil SA et al (2007) Large-scale phosphorylation analysis of α-factor-arrested Saccharomyces cerevisiae. J Proteome Res 6:1190–1197

    Article  PubMed  CAS  Google Scholar 

  • Li H, Wong WS, Zhu L, Guo HW, Ecker J, Li N (2009) Phosphoproteomic analysis of ethylene-regulated protein phosphorylation in etiolated seedlings of Arabidopsis mutant ein2 using two-dimensional separations coupled with a hybrid quadrupole time-of-flight mass spectrometer. Proteomics 9:1646–1661

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Sadygov RG, Yates JR (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201

    Article  PubMed  CAS  Google Scholar 

  • Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J Cell Mol Biol 28:465–474

    CAS  Google Scholar 

  • Loake GJ, Choudhary AD, Harrison MJ, Mavandad M, Lamb CJ, Dixon RA (1991) Phenylpropanoid pathway intermediates regulate transient expression of a chalcone synthase gene promoter. Plant Cell 3:829–840

    Article  PubMed  CAS  Google Scholar 

  • Locher R, Martin V, Grison R, Pilet PE (1994) Cell wall-bound trans- and cis-ferulic acids in growing maize roots. Physiol Plant 90:734–738

    Article  CAS  Google Scholar 

  • Mavandad M, Edwards R, Liang X, Lamb CJ, Dixon RA (1990) Effects of trans-cinnamic acid on expression of the bean phenylalanine ammonia-lyase gene family. Plant Physiol 94:671–680

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T (2006) Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc Natl Acad Sci USA 103:16598–16603

    Article  PubMed  CAS  Google Scholar 

  • Mockler TC, Yu XH, Shalitin D, Parikh D, Michael TP, Liou J, Huang J, Smith Z, Alonso JM, Ecker JR, Chory J, Lin CT (2004) Regulation of flowering time in Arabidopsis by K homology domain proteins Proc. Nat Acad Sci USA 101:12759–12764

    Article  CAS  Google Scholar 

  • Morita S, Hiradate S, Fujii Y, Harada J (2005) Cis-cinnamoyl glucoside as a major plant growth inhibitor contained in Spiraea prunifolia. Plant Growth Regul 46:125–131

    Article  CAS  Google Scholar 

  • Nam YW, Tichit L, Leperlier M, Cuerq B, Marty I, Lelievre JM (1999) Isolation and characterization of mRNAs differentially expressed during ripening of wild strawberry (Fragaria vesca L.) fruits. Plant Mol Biol 39:629–636

    Article  PubMed  CAS  Google Scholar 

  • Nessler CL, Burnett RJ (1992) Organization of the major latex protein gene family in opium poppy. Plant Mol Biol 20:749–752

    Article  PubMed  CAS  Google Scholar 

  • Nessler CL, Kurz WGW, Pelcher LE (1990) Isolation and analysis of the major latex protein genes of opium poppy. Plant Mol Biol 15:951–953

    Article  PubMed  CAS  Google Scholar 

  • Ohashi H, Yamamoto E, Lewis NG, Towers GHN (1987) 5-Hydroxyferulic acid in Zea mays and Hordeum vulgare cell walls. Phytochemistry 26:1915–1916

    Article  CAS  Google Scholar 

  • Ohkmae KP (2004) Proteomic studies in plants. J Biochem Mol Biol 37:133–138

    Google Scholar 

  • Ottoline Leyser HM, Lincoln CA, Timpte C, Lammer D, Turner J, Estelle M (1993) Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin activating enzyme E1. Nature 364:161–164

    Article  Google Scholar 

  • Phee BK, Park S, Cho JH, Jeon JS, Bhoo SH, Hahn TR (2007) Comparative proteomic analysis of blue light signaling components in the Arabidopsis cryptochrome 1 mutant. Mol Cells 23:154–160

    PubMed  CAS  Google Scholar 

  • Rasmussen S, Rudolph H (1997) Isolation, purification and characterization of UDP-glucose: cis-p-coumaric acid beta-D-glucosyltransferase from Sphagnum fallax. Phytochemistry 46:449–453

    Article  CAS  Google Scholar 

  • Razal RA, Ellis S, Singh S, Lewis NG, Towers GHN (1996) Nitrogen recycling in phenylpropanoid metabolism. Phytochemistry 41(1):31–35

    Article  CAS  Google Scholar 

  • Riou-Khamlichi C, Huntley R, Jacqmard A, Murray JAH (1999) Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283:1541–1544

    Article  PubMed  CAS  Google Scholar 

  • Rohde A, Morreel K, Ralph J, Goeminne G, Hostyn V, De RR, Kushnir S, Van DJ, Joseleau JP, Vuylsteke M, Van DG, Van BJ, Messens E, Boerjan W (2004) Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell 16:2749–2771

    Article  PubMed  CAS  Google Scholar 

  • Rossignol M, Peltier J, Mock H, Matros A, Maldonado AM, Jorrin JV (2006) Plant proteome analysis: a 2004–2006 update. Proteomics 6:5529–5548

    Article  PubMed  CAS  Google Scholar 

  • Ruperti B, Bonghi C, Ziliotto F, Pagni S, Rasori A, Varotto S, Tonutti P, Giovannoni JJ, Ramina A (2002) Characterization of a major latex protein (MLP) gene down-regulated by ethylene during peach fruitlet abscission. Plant Sci 163:265–272

    Article  CAS  Google Scholar 

  • Schalk M, Cabello-Hurtado F, Pierrel MA, Atanossova R, Saindrenan P, Werck-Reichhart D (1998) Piperonylic acid, a selective, mechanism-based inactivator of the trans-cinnamate 4-hydroxylase: a new tool to control the flux of metabolites in the phenylpropanoid pathway. Plant Physiol 118:209–218

    Article  PubMed  CAS  Google Scholar 

  • Schweizer P, Buchala A, Silverman P, Seskar M, Raskin I, Metraux JP (1997) Jasmonate-inducible genes are activated in rice by pathogen attack without a concomitant increase in endogenous jasmonic acid levels. Plant Physiol 14:79–88

    Google Scholar 

  • Shirley BW, Kubasek WL, Storz G, Bruggemann E, Koornneef M, Ausubel FM, Goodman HM (1995) Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J 8:659–671

    Article  PubMed  CAS  Google Scholar 

  • Smith NA, Singh SP, Wang MB, Stoutjesdijk P, Green A, Waterhouse PM (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320

    Article  PubMed  CAS  Google Scholar 

  • Srivastava LM (2002) Plant growth and development, chaps 6, 10. Academic Press, London

    Google Scholar 

  • Staswick PE, Tiryaki I, Rowe ML (2002) Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14:1405–1415

    Article  PubMed  CAS  Google Scholar 

  • Steiling K, Kadar AY, Bergerat A, Flanigon J, Sridhar S, Shah V, Ahmad QR, Brody JS, Lenburg ME, Steffen M, Spira A (2009) Comparison of proteomic and transcriptomic profiles in the bronchial airway epithelium of current and never smokers. Plos One 4:e5043

    Article  PubMed  Google Scholar 

  • Tam YY, Epstein E, Normanly J (2000) Characterization of auxin conjugates in Arabidopsis. Low steady-state levels of indole-3-acetyl-asparte, indole-3-acetyl-glutamate, and indole-3-acetyl-glucose. Plant Physiol 123:589–595

    Article  PubMed  CAS  Google Scholar 

  • Trauger SA, Kalisak E, Kalisak J, Morita H, Weinberg MV, Menon AL, Poole FL II, Adams MWW, Siuzdak G (2008) Correlating the transcriptome, proteome, and metabolome in the environmental adaption of a hyperthermophile. J Proteome Research 7:1027–1035

    Article  CAS  Google Scholar 

  • Tsuchisaka A, Yu GX, Jin HL, Alonso JM, Ecker JR, Zhang XM, Gao S, Theologis A (2009) A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics 183:979–1003

    Article  PubMed  CAS  Google Scholar 

  • Tun NN, Livaja M, Kieber JJ, Scherer GF (2008) Zeatin-induced nitric oxide (NO) biosynthesis in Arabidopsis thaliana mutants of NO biosynthesis and of two-component signaling genes. New Phytol 178:515–531

    Article  PubMed  CAS  Google Scholar 

  • Turner LB, Mueller-Harvey I, Mcallan AB (1992) light-induced isomerization and dimerization of cinnamic acid derivatives in cell walls. Phytochem 33:791–796

    Article  Google Scholar 

  • Van Der Straeten D, Zhou ZY, Prinsen E, Van Onckelen HA, Van Montagu MC (2001) A comparative molecular-physiological study of submergence response in lowland and deepwater rice. Plant Physiol 125:955–968

    Article  Google Scholar 

  • Van Overbeek J, Blondeau R, Horne V (1951) Trans-cinnamic acid as an anti-auxin. Am J Bot 38:589–595

    Article  Google Scholar 

  • Ververidis F, Trantas E, Douglas C, Vollmer G, Kretzschmar G, Panopoulos N (2007) Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: chemical diversity, impacts on plant biology and human health. Biotechnology 2:1214–1234

    CAS  Google Scholar 

  • Vestal ML, Campbell JM (2005) Tandem time-of-flight mass spectrometry. Meth Enzymol 402:79–108

    Article  PubMed  CAS  Google Scholar 

  • Visser EJW, Cohen JD, Barendse GWM, Blom CWPM, Voesenek LACJ (1996) An ethylene-mediated increase in sensitivity to auxin induces adventitious root formation in flooded Rumex palustris Sm. Plant Physiol 2:1687–1692

    Google Scholar 

  • Vissers JPC, Langridge JI, Aerts JMFG (2007) Analysis and quantification of diagnostic serum markers and protein signatures for Gaucher disease. Mol Cell Proteomics 6:755–766

    Article  PubMed  CAS  Google Scholar 

  • Vogel JP, Schuerman P, Woeste K, Brandstatter I, Kieber JJ (1998) Isolation and characterization of Arabidopsis mutants defective in the induction of ethylene biosynthesis by cytokinin. Genetics 149:417–427

    PubMed  CAS  Google Scholar 

  • Walcazk HA, Dean JV (1999) Vascular transport of the glutathione conjugate of trans-cinnaic acid. Phytochemistry 53:441–446

    Article  Google Scholar 

  • Wang W, Zhou H, Lin H, Roy S, Shaler TA, Hill LR, Norton S, Kumar P, Anderle M, Becker CH (2003) Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal Chem 75:4818–4826

    Article  PubMed  CAS  Google Scholar 

  • Wang NN, Shih MC, Li N (2005) The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses. J Exp Bot 56:909–920

    Article  PubMed  CAS  Google Scholar 

  • Went FW, Thimann KV (1937) Phytohormones. The macmillan company, New York, pp 137–140

    Google Scholar 

  • Wong WS, Guo D, Wang XL, Yin ZQ, Xia B, Li N (2005) Study of cis-cinnamic acid in Arabidopsis thaliana. Plant Physiol Biochem 43:929–937

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Haig T, Pratley J, Lemerle D, An M (2001) Allelochemicals in wheat (Triticum aestivum L.): variation of phenolic acids in shoot tissues. J Chem Ecol 27:125–135

    Article  PubMed  CAS  Google Scholar 

  • Wu FZ, Lu TC, Shen Z, Wang BC, Wang HX (2008) N-terminal acetylation of two major latex proteins from Arabidopsis thaliana using electrospray ionization tandem mass spectrometry. Plant Mol Biol Reporter 26:88–97

    Article  CAS  Google Scholar 

  • Yang XX, Choi HW, Yang SF, Li N (1999) A UV-light activated cinnamic acid isomer regulates plant growth and gravitropism via an ethylene receptor independent pathway. Aust J Plant Physiol 26:325–335

    Article  PubMed  CAS  Google Scholar 

  • Yin ZQ, Wong WS, Ye WC, Li N (2003) Biologically active cis-cinnamic acid occurs naturally in Brassica parachinensis. Chin Sci Bull 48:555–558

    Article  CAS  Google Scholar 

  • Zimmerman PW, Hitchcock AE (1939) Activation of cinnamic acid by ultraviolet light and the physiological activity of its emanation. Contrib Boyce Thompson Inst Plant Res 10:197–200

    CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the grants: HKUST6276/03M, 661207, 661408, HKUST6413/06M, N_HKUST627/06, DAG98/99.SC10, DAG04/05.SC08, DAG93/94.SC06 and HKUST6105/00M, HKUST6105/01M, RPC07/08.SC16, SBI08/09.SC08 and GMGS08/09.SC04, which were awarded to Ning LI by the Research Grant Council of Hong Kong and HKUST R&D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, D., Wong, W.S., Xu, W.Z. et al. Cis-cinnamic acid-enhanced 1 gene plays a role in regulation of Arabidopsis bolting. Plant Mol Biol 75, 481–495 (2011). https://doi.org/10.1007/s11103-011-9746-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-011-9746-4

Keywords

Navigation