Skip to main content
Log in

Expression of the rice CDPK-7 in sorghum: molecular and phenotypic analyses

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Sorghum (Sorghum bicolor (L.) Moench) is an important source for food, feed, and possesses many agronomic attributes attractive for a biofuels feedstock. A warm season crop originating from the semi-arid tropics, sorghum is relatively susceptible to both cold and freezing stress. Enhancing the ability of sorghum to tolerate cold and freezing offers a route to expand the acreage for production, and provides a potential drought avoidance strategy during flowering, an important parameter for protection of yield. Targeted perturbation of the signal transduction pathway, that is triggered by exposure to abiotic stress in plants, has been demonstrated in model systems as an avenue to augment tolerance. Calcium-dependent protein kinases (CDPKs) are key players in a plant’s response to environmental assaults. To test the impact of modulating CDPK activity in sorghum as a means to enhanced abiotic stress tolerance, we introduced a constitutively expressed rice CDPK-7 (OsCDPK-7) gene construct. Sorghum transformants carrying this cassette, were not improved in cold or salt stress under the conditions tested. However, a lesion mimic phenotype and up-regulation of a number of pathogen related proteins, along with transcripts linked to photosynthesis were observed. These results demonstrate that modulating the Ca signaling cascade in planta via unregulated enhanced CDPK activity can lead to off-type effects likely due to the broadly integrated nature of these enzymes in signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Awada T, Dunigan DD, Dickman MB (2003) Animal anti-apoptotic genes ameliorate the loss of turgor in water-stressed transgenic tobacco. Can J Plant Sci 83:499–506

    CAS  Google Scholar 

  • Awada T, Dunigan DD, Dickman MB (2004) Animal anti-apoptotic genes enhance recovery from drought stress in tobacco. Int J Agric Biol 6:943–949

    CAS  Google Scholar 

  • Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  PubMed  CAS  Google Scholar 

  • Buhr T, Sato S, Ebrahim F, Xing A, Zhou Y, Mathiesen M, Schweiger B, Kinney AJ, Staswick P, Clemente T (2002) Ribozyme termination of RNA transcripts down-regulate seed fatty acid genes in transgenic soybean. Plant J 30:155–163

    Article  PubMed  CAS  Google Scholar 

  • Carrington JC, Freed DD (1990) Cap-independent enhancement of translation by a plant potyvirus 5′ nontranslated region. J Virol 64:1590–1597

    PubMed  CAS  Google Scholar 

  • Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485

    Article  PubMed  CAS  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    Article  PubMed  CAS  Google Scholar 

  • de Sousa CAF, Sodek L (2003) Alanine metabolism and alanine aminotransferase activity in soybean (Glycine max) during hypoxia of the root system and subsequent return to normoxia. Environ Exp Bot 50:1–8

    Article  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Reptr 1:19–21

    Article  CAS  Google Scholar 

  • Dickman MB, Park YK, Oltersdorf T, Li W, Clemente T, French R (2001) Abrogation of disease development in plants expressing animal antiapoptotic genes. Proc Natl Acad Sci USA 98:6957–6962

    Article  PubMed  CAS  Google Scholar 

  • Dicko MH, Gruppen H, Traoré AS, Voragen AGJ, van Berkel WJH (2006) Sorghum grain as human food in Africa: relevance of content of starch and amylase activities. Afr J Biotechnol 5:384–395

    CAS  Google Scholar 

  • Dussault A-A, Pouliot M (2006) Rapid and simple comparison of messenger RNA levels using real-time PCR. Biol Proced 8:1–10

    Article  CAS  Google Scholar 

  • Ercoli L, Mariotti M, Masoni A, Arduini I (2004) Growth responses of sorghum plants to chiling temperature and duration of exposure. Euro J Agron 21:93–103

    Article  Google Scholar 

  • Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) Affy-analysis of Affymetrix GeneChips data at the probe level. Bioinformatics 20:307–315

    Article  PubMed  CAS  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry RA, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang YJ, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed  Google Scholar 

  • Gray J, Janick-Buckner D, Buckner B, Close PS, Johal GS (2002) Light-dependent death of maize lls1 cells is mediated by mature chloroplasts. Plant Physiol 130:1894–1907

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  PubMed  CAS  Google Scholar 

  • Hirashima M, Tanaka R, Tanaka A (2009) Light-independent cell death induced by accumulation of pheophorbide a in Arabidopsis thaliana. Plant Cell Physiol 50:719–729

    Article  PubMed  CAS  Google Scholar 

  • Howe A, Sato S, Dweikat I, Fromm M, Clemente T (2006) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25:784–791

    Article  PubMed  CAS  Google Scholar 

  • Hu G, Yalpani N, Briggs SP, Johal GS (1998) A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell 10:1095–1105

    Article  PubMed  CAS  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  • Johal GS, Hulbert SH, Briggs SP (1995) Disease lesion mimics of maize: a model for the cell death in plants. Bioessays 17:685–692

    Article  Google Scholar 

  • Klimecka M, Muszynska G (2007) Structure and functions of plant calcium-dependent protein kinases. Acta Biochim Pol 54:219–233

    PubMed  CAS  Google Scholar 

  • Liu J-J, Ekramoddoullah AKM (2006) The family 10 of plant pathogenesis-related proteins: their structure, regulation, and function in response to biotic and abiotic stresses. Physiol Mol Plant Path 68:3–13

    Article  CAS  Google Scholar 

  • Lorrain S, Vailleau F, Balagué C, Roby D (2003) Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends Plant Sci 8:263–271

    Article  PubMed  CAS  Google Scholar 

  • Ludwig AA, Romeis T, Jones JDG (2004) CDPK-mediated signalling pathways: specificity and cross-talk. J Exp Bot 55:181–188

    Article  PubMed  CAS  Google Scholar 

  • Luo Z-Q, Clemente T, Farrand SK (2001) Construction of a derivative of Agrobacterium tumefaciens C58 that does not mutate to tetracycline resistance. Mol Plant Micro Int 14:98–103

    Article  CAS  Google Scholar 

  • Ma W, Berkowitz GA (2007) The grateful dead: calcium and cell death in plant innate immunity. Cellular Microbiol 9:2571–2585

    Article  CAS  Google Scholar 

  • Miyashita Y, Dolferus R, Ismond KP, Good AG (2007) Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana. Plant J 49:1108–1121

    Article  PubMed  CAS  Google Scholar 

  • Mock H-P, Grimm B (1997) Reduction of uroporphyrinogen decarboxylase by antisense RNA expression affects activities of other enzymes involved in tetrapyrrole biosynthesis and leads to light-dependent necrosis. Plant Physiol 113:1101–1112

    PubMed  CAS  Google Scholar 

  • Mock HP, Heller W, Molina A, Neubohn B, Sandermann H Jr, Grimm B (1999) Expression of uroporphyrinogen decarboxylase or coproporphyrinogen oxidase antisense RNA in tobacco induces pathogen defense response conferring increased resistance to tobacco mosaic virus. J Biol Chem 274:4231–4238

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH (2008) Genomics of sorghum. Int J Plant Genomics 6

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapmann J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Ginggle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Rahman M, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Pruzinská A, Taner G, Anders I, Roca M, Hörtensteiner S (2003) Chlotophyll breakdown: Pheophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene. Proc Natl Acad Sci USA 100:15259–15264

    Article  PubMed  Google Scholar 

  • Ray S, Agarwal P, Arora R, Kapoor S, Taygi AK (2007) Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. spp. indica). Mol Gen Genet 278:493–505

    CAS  Google Scholar 

  • Saijo Y, Hata S, Sheen J, Izui K (1997) cDNA cloning and prokaryotic expression of maize calcium-dependent protein kinases. Biochim Biophys Acta 1350:109–114

    PubMed  CAS  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  PubMed  CAS  Google Scholar 

  • Saijo Y, Kinoshita N, Ishiyama K, Hata S, Kyozuka J, Hayakawa T, Nakamura T, Shimamoto K, Yamaya T, Izui K (2001) A Ca+2-dependent protein kinase that endows rice plants with cold- and salt-stress tolerance functions in vascular bundles. Plant Cell Physiol 42:1228–1233

    Article  PubMed  CAS  Google Scholar 

  • Smyth GK (2004) Linear models and emprical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article 3

  • Snedden WA, Fromm H (1998) Calmodulin, calmodulin-related proteins and plant responses to the environment. Trends Plant Sci 3:299–304

    Article  Google Scholar 

  • Staggenborg SA, Vanderlip RL (1996) Sorghum grain yield reductions caused by duration and timing of freezing temperatures. Agron J 88:473–477

    Article  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445

    Article  PubMed  CAS  Google Scholar 

  • Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Ann Rev Plant Biol 58:321–346

    Article  CAS  Google Scholar 

  • Tiryaki I, Andrews DJ (2001) Germination and seedling cold tolerance in sorghum: I. Evaluation of rapid screening methods. Crop Sci 93:1386–1391

    Google Scholar 

  • Xiong L, Schumaker KS, Zhu J-K (2002) Cell signaling during cold, drought, and salt stress. Plant Cell Supp 2002:165–183

    Google Scholar 

  • Yang MS, Wardzala E, Johal GS, Gray J (2004) The wound-inducible Lls1 gene from maize is an othologue of the Arabidopsis Acd1 gene, and the LLS1 protein is present in non-photosynthetic tissues. Plant Mol Biol 54:175–191

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Tuinstra MR, Claassen MM, Gordon WB, Witt MD (2004) Analysis of cold tolerance in sorghum under controlled environment conditions. Field Crops Res 85:21–30

    Article  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported through funds provided by the Nebraska Sorghum Board, and the Nebraska Research Initiative. TK was supported through a USDA-NRI graduate training grant award number USDA 2007-55100-17788. The authors wish to thank Amy Hilske for greenhouse care of plants and Yuannan Xia for assistance with the microarray study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Clemente.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 364 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mall, T.K., Dweikat, I., Sato, S.J. et al. Expression of the rice CDPK-7 in sorghum: molecular and phenotypic analyses. Plant Mol Biol 75, 467–479 (2011). https://doi.org/10.1007/s11103-011-9741-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-011-9741-9

Keywords

Navigation