Skip to main content
Log in

The effect of different 3′ untranslated regions on the accumulation and stability of transcripts of a gfp transgene in chloroplasts of transplastomic tobacco

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The 3′ untranslated region (3′ UTR) of transcripts is a major determinant of transcript stability in plastids and plays an important role in regulating gene expression. In order to compare the effect of different 3′ UTRs on transgene expression in tobacco chloroplasts, the 3′ UTRs from the tobacco chloroplast rbcL, psbA, petD and rpoA genes and the terminator region of the Escherichia coli rrnB operon were inserted downstream of the gfp reporter gene under the control of the psbA promoter, and the constructs were introduced into the plastid genome by particle bombardment. RNA-gel blot analysis of homoplasmic transplastomic plants identified gfp transcripts of ~1.0 and ~1.4 kb from all constructs and showed that plants expressing gfp with the rrnB terminator contained 4 times more gfp transcripts than plants expressing gfp with the rbcL and rpoA 3′ UTRs. The amounts of transcripts accumulated roughly correlated with the half-life of the transcripts, determined by RNA-gel blot analysis of transcripts present in leaves treated with actinomycin D to prevent continued transcription of the chimeric gfp genes. Transcripts containing the 3′ region of rrnB were most stable, with half-lives of ~43 h, considerably longer than the half-lives of the other ~1.0 kb gfp transcripts (13–26 h). Immunoblot analysis with antibodies to GFP indicated that all plants contained about the same amount of GFP (~0.2% total soluble protein), suggesting either that translation was limited by something other than the amount of transcript or that the 3′ UTR was affecting translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams CC, Stern DB (1990) Control of mRNA stability in chloroplasts by 3′ inverted repeats: effects of stem and loop mutations on degradation of psbA mRNA in vitro. Nucleic Acids Res 18:6003–6010

    Article  PubMed  CAS  Google Scholar 

  • Amann E, Brosius J (1985) ‘ATG vectors’ for regulated high-level expression of cloned genes in Escherichia coli. Gene 40:183–190

    Article  PubMed  CAS  Google Scholar 

  • Bally J, Nadai M, Vitel M, Rolland A, Dumain R, Dubald M (2009) Plant physiological adaptations to the massive foreign protein synthesis occurring in recombinant chloroplasts. Plant Physiol 150:1474–1481

    Article  PubMed  CAS  Google Scholar 

  • Barkan A, Goldschmidt-Clermont M (2000) Participation of nuclear genes in chloroplast gene expression. Biochimie 82:59–572

    Article  Google Scholar 

  • Barnes D, Franklin S, Schultz J, Henry R, Brown E, Coragliotti A, Mayfield SP (2005) Contribution of 5′- and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol Genet Genomics 274:625–636

    Article  PubMed  CAS  Google Scholar 

  • Birch-Machin I, Newell CA, Hibberd JM, Gray JC (2004) Accumulation of rotavirus VP6 protein in chloroplasts of transplastomic tobacco is limited by protein stability. Plant Biotechnol J 2:261–270

    Article  PubMed  CAS  Google Scholar 

  • Bollenbach TJ, Schuster G, Portnoy V, Stern DB (2007) Processing, degradation, and polyadenylation of chloroplast transcripts. In: Bock R (ed) Cell and molecular biology of plastids (topics in current genetics vol 19). Springer, Berlin, pp 175–211

    Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chen HC, Stern DB (1991) Specific binding of chloroplast proteins in vitro to the 3′ untranslated region of spinach chloroplast petD mRNA. Mol Cell Biol 11:4380–4388

    PubMed  CAS  Google Scholar 

  • Chen Q, Adams CC, Usack L, Yang J, Monde RA, Stern DB (1995) An AU-rich element in the 3′ untranslated region of the spinach chloroplast petD gene participates in sequence-specific RNA-protein complex formation. Mol Cell Biol 15:2010–2018

    PubMed  CAS  Google Scholar 

  • Crouse EJ, Bohnert HJ, Schmitt JM (1984) Chloroplast RNA synthesis. In: Ellis RJ (ed) Chloroplast biogenesis. Cambridge University Press, Cambridge, pp 83–136

    Google Scholar 

  • Davis SJ, Vierstra RD (1998) Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Mol Biol 36:521–528

    Article  PubMed  CAS  Google Scholar 

  • Drager RG, Zeidler M, Simpson CL, Stern DB (1996) A chloroplast transcript lacking the 3′ inverted repeat is degraded by 3′–>5′ exoribonuclease activity. RNA 2:52–663

    Google Scholar 

  • Eberhard S, Drapier D, Wollman FA (2002) Searching limiting steps in the expression of chloroplast-encoded proteins: relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii. Plant J 31:149–160

    Article  PubMed  CAS  Google Scholar 

  • Eibl C, Zou Z, Beck A, Kim M, Mullet J, Koop HU (1999) In vivo analysis of plastid psbA, rbcL and rpl32 UTR elements by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. Plant J 19:333–345

    Article  PubMed  CAS  Google Scholar 

  • Gallie DR (1996) Translational control of cellular and viral mRNAs. Plant Mol Biol 32:145–158

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt-Clermont M, Rahire M, Rochaix JD (2008) Redundant cis-acting determinants of 3′ processing and RNA stability in the chloroplast rbcL mRNA of Chlamydomonas. Plant J 53:566–577

    Article  PubMed  CAS  Google Scholar 

  • Gruissem W, Tonkyn JC (1993) Control mechanisms of plastid gene expression. Crit Rev Plant Sci 12:19–55

    CAS  Google Scholar 

  • Hayes R, Kudla J, Schuster G, Gabay L, Maliga P, Gruissem W (1996) Chloroplast mRNA 3′-end processing by a high molecular weight protein complex is regulated by nuclear encoded RNA binding proteins. EMBO J 15:1132–1141

    PubMed  CAS  Google Scholar 

  • Hosler JP, Wurtz EA, Harris EH, Gillham NW, Boynton JE (1989) Relationship between gene dosage and gene expression in the chloroplast of Chlamydomonas reinhardtii. Plant Physiol 91:648–655

    Article  PubMed  CAS  Google Scholar 

  • Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18:1172–1176

    Article  PubMed  CAS  Google Scholar 

  • Khan MS, Maliga P (1999) Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat Biotechnol 17:910–915

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Christopher DA, Mullet JE (1993) Direct evidence for selective modulation of psbA, rpoA, rbcL and 16S RNA stability during barley chloroplast development. Plant Mol Biol 22:447–463

    Article  PubMed  CAS  Google Scholar 

  • Klaff P, Gruissem W (1991) Changes in chloroplast mRNA stability during leaf development. Plant Cell 3:517–529

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lin-Chao S, Chiou N-T, Schuster G (2007) The PNPase, exosome and RNA helicases as the building components of evolutionarily-conserved RNA degradation machines. J Biomed Sci 14:523–532

    Article  PubMed  Google Scholar 

  • Lisitsky I, Liveanu V, Schuster G (1995) RNA-binding characteristics of a ribonucleoprotein from spinach chloroplasts. Plant Physiol 107:933–941

    PubMed  CAS  Google Scholar 

  • Maliga P (2002) Engineering the plastid genome of higher plants. Curr Opin Plant Biol 5:164–172

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch E, Sambrook J (1985) Molecular cloning: a laboratory manual. Cold Spring Harbour Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Monde RA, Greene JC, Stern DB (2000) The sequence and secondary structure of the 3′-UTR affect 3′-end maturation, RNA accumulation, and translation in tobacco chloroplasts. Plant Mol Biol 44:529–542

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Newell CA, Birch-Machin I, Hibberd JM, Gray JC (2003) Expression of green fluorescent protein from bacterial and plastid promoters in tobacco chloroplasts. Transgenic Res 12:631–634

    Article  PubMed  CAS  Google Scholar 

  • Rapp JC, Baumgartner BJ, Mullet J (1992) Quantitative analysis of transcription and RNA levels of 15 barley chloroplast genes. Transcription rates and mRNA levels vary over 300-fold; predicted mRNA stabilities vary 30-fold. J Biol Chem 267:21404–21411

    PubMed  CAS  Google Scholar 

  • Rott R, Drager RG, Stern DB, Schuster G (1996) The 3′ untranslated regions of chloroplast genes in Chlamydomonas reinhardtii do not serve as efficient transcriptional terminators. Mol Gen Genet 252:676–683

    PubMed  CAS  Google Scholar 

  • Rott R, Liveanu V, Drager RG, Stern DB, Schuster G (1998) The sequence and structure of the 3′-untranslated regions of chloroplast transcripts are important determinants of mRNA accumulation and stability. Plant Mol Biol 36:307–314

    Article  PubMed  CAS  Google Scholar 

  • Ruhlman T, Verma D, Samson N, Daniell H (2010) The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol 152:2088–2104

    Article  PubMed  CAS  Google Scholar 

  • Rymarquis LA, Higgs DC, Stern DB (2006) Nuclear suppressors define three factors that participate in both 5′ and 3′ end processing of mRNAs in Chlamydomonas chloroplasts. Plant J 46:448–461

    Article  PubMed  CAS  Google Scholar 

  • Rymarquis LA, Webster BR, Stern DB (2007) The nucleus encoded factor MCD4 participates in degradation of nonfunctional 3′ UTR sequences generated by cleavage of pre-mRNA in Chlamydomonas chloroplasts. Mol Genet Genomics 277:329–340

    Article  PubMed  CAS  Google Scholar 

  • Schuster G, Gruissem W (1991) Chloroplast mRNA 3′ end processing requires a nuclear-encoded RNA-binding protein. EMBO J 10:1493–1502

    PubMed  CAS  Google Scholar 

  • Sijben-Muller G, Hallick RB, Alt J, Westhoff P, Herrmann RG (1986) Spinach plastid genes coding for initiation factor IF-1, ribosomal protein S11 and RNA polymerase alpha-subunit. Nucleic Acids Res 14:1029–1044

    Article  PubMed  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  PubMed  CAS  Google Scholar 

  • Staub JM, Maliga P (1994) Translation of psbA mRNA is regulated by light via the 5′-untranslated region in tobacco plastids. Plant J 6:547–553

    Article  PubMed  CAS  Google Scholar 

  • Stern DB, Gruissem W (1987) Control of plastid gene expression: 3′ inverted repeats act as mRNA processing and stabilizing elements, but do not terminate transcription. Cell 51:1145–1157

    Article  PubMed  CAS  Google Scholar 

  • Stern DB, Kindle KL (1993) 3′ end maturation of the Chlamydomonas reinhardtii chloroplast atpB mRNA is a two-step process. Mol Cell Biol 13:2277–2285

    PubMed  CAS  Google Scholar 

  • Stern DB, Jones H, Gruissem W (1989) Function of plastid mRNA 3′ inverted repeats. RNA stabilization and gene-specific protein binding. J Biol Chem 264:18742–18750

    PubMed  CAS  Google Scholar 

  • Stern DB, Radwanski ER, Kindle KL (1991) A 3′ stem/loop structure of the Chlamydomonas chloroplast atpB gene regulates mRNA accumulation in vivo. Plant Cell 3:285–297

    Article  PubMed  CAS  Google Scholar 

  • Sugiura M (1992) The chloroplast genome. Plant Mol Biol 19:149–168

    Article  PubMed  CAS  Google Scholar 

  • Sugiura M, Shinozaki K, Zaita N, Kusuda M (1986) Clone bank of the tobacco (Nicotiana tabacum) chloroplast genome as a set of overlapping restriction endonuclease fragments: mapping of eleven ribosomal protein genes. Plant Sci 44:211–216

    Article  CAS  Google Scholar 

  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917

    Article  PubMed  CAS  Google Scholar 

  • Wakasugi T, Sugita M, Tsudzuki T, Sugiura M (1998) Updated gene map of tobacco chloroplast DNA. Plant Mol Biol Rep 16:231–241

    Article  CAS  Google Scholar 

  • Yang J, Schuster G, Stern DB (1996) CSP41, a sequence-specific chloroplast mRNA binding protein, is an endoribonuclease. Plant Cell 8:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Yohn CB, Cohen A, Danon A, Mayfield SP (1998a) A poly(A) binding protein functions in the chloroplast as a message-specific translation factor. Proc Natl Acad Sci USA 95:2238–2243

    Article  PubMed  CAS  Google Scholar 

  • Yohn CB, Cohen A, Rosch C, Kuchka MR, Mayfield SP (1998b) Translation of the chloroplast psbA mRNA requires the nuclear-encoded poly(A)-binding protein, RB47. J Cell Biol 142:435–442

    Article  PubMed  CAS  Google Scholar 

  • Zerges W (2000) Translation in chloroplasts. Biochimie 82:583–601

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

  • Zurawski G, Clegg MT (1987) Evolution of higher-plant chloroplast DNA-encoded genes: implication for structure-function and phylogenetic studies. Ann Rev Plant Physiol 38:391–418

    Article  CAS  Google Scholar 

  • Zurawski G, Perrot B, Bottomley W, Whitfeld PR (1981) The structure of the gene for the large subunit of ribulose 1, 5-bisphosphate carboxylase from spinach chloroplast DNA. Nucleic Acids Res 9:3251–3270

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Pal Maliga and Masahiro Sugiura for gifts of plasmids. S.T. was supported by a scholarship from the Thai Government. This work was supported by grants from the European Union (FP5 QLK-CT-1999-00692 and FP6 LSHG-CT-2003-503238).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Gray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tangphatsornruang, S., Birch-Machin, I., Newell, C.A. et al. The effect of different 3′ untranslated regions on the accumulation and stability of transcripts of a gfp transgene in chloroplasts of transplastomic tobacco. Plant Mol Biol 76, 385–396 (2011). https://doi.org/10.1007/s11103-010-9689-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9689-1

Keywords

Navigation