Skip to main content

Advertisement

Log in

Functional analysis of SlEZ1 a tomato Enhancer of zeste (E(z)) gene demonstrates a role in flower development

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The Enhancer of Zeste (E(z)) Polycomb group (PcG) proteins, which are encoded by a small gene family in Arabidopsis thaliana, have been shown to participate to the control of flowering and seed development. For the time being, little is known about the function of these proteins in other plants. In tomato E(z) proteins are encoded by at least two genes namely SlEZ1 and SlEZ2 while a third gene, SlEZ3, is likely to encode a truncated non-functional protein. The analysis of the corresponding mRNA demonstrates that these two genes are differentially regulated during plant and fruit development. We also show that SlEZ1 and SlEZ2 are targeted to the nuclei. These results together with protein sequence analysis makes it likely that both proteins are functional E(z) proteins. The characterisation of SlEZ1 RNAi lines suggests that although there might be some functional redundancy between SlEZ1 and SlEZ2 in most plant organs, the former protein is likely to play specific function in flower development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Aasland R, Francis Stewart A, Gibson T (1996) The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional corepressor N-CoR and TFIIIB. Trends Biochem Sci 21:87–88

    CAS  PubMed  Google Scholar 

  • Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17:2954–2965

    Article  CAS  PubMed  Google Scholar 

  • Baroux C, Pien S, Grossniklaus U (2007) Chromatin modification and remodeling during early seed development. Curr Opin Genet Dev 17:473–479

    Article  CAS  PubMed  Google Scholar 

  • Barrero LS, Cong B, Wu F, Tanksley S (2006) Developmental characterization of the fasciated locus and mapping of Arabidopsis candidate genes involved in the control of floral meristem size and carpel number in tomato. Genome 49:991–1006

    Article  CAS  PubMed  Google Scholar 

  • Baumbusch LO, Thorstensen T, Krauss V, Fischer A, Naumann K, Assalkhou R, Schulz I, Reuter G, Aalen RB (2001) The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes. Nucl Acids Res 29:4319–4333

    Article  CAS  PubMed  Google Scholar 

  • Benvenuto G, Formiggini F, Laflamme P, Malakhov M, Bowler C (2002) The Photomorphogenesis regulator DET1 binds the amino-terminal tail of histone H2B in a nucleosome context. Curr Biol 12:1529–1534

    Article  CAS  PubMed  Google Scholar 

  • Bisbis B, Delmas F, Joubes J, Sicard A, Hernould M, Inze D, Mouras A, Chevalier C (2006) Cyclin-dependent kinase (CDK) inhibitors regulate the CDK-cyclin complex activities in endoreduplicating cells of developing tomato fruit. J Biol Chem 281:7374–7383

    Article  CAS  PubMed  Google Scholar 

  • Caro E, Castellano MM, Gutierrez C (2007) A chromatin link that couples cell division to root epidermis patterning in Arabidopsis. Nature 447:213–217

    Article  CAS  PubMed  Google Scholar 

  • Carrari F, Baxter C, Usadel B, Urbanczyk-Wochniak E, Zanor M-I, Nunes-Nesi A, Nikiforova V, Centero D, Ratzka A, Pauly M, Sweetlove LJ, Fernie AR (2006) Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiol 142:1380–1396

    Article  CAS  PubMed  Google Scholar 

  • Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55:1671–1685

    Article  CAS  PubMed  Google Scholar 

  • Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon Y-H, Sung ZR, Goodrich J (2004) Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development 131:5263–5276

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu J-K (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    Article  CAS  PubMed  Google Scholar 

  • Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nature Genet 40:800–804

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Benfey PN (2009) Interplay between SCARECROW, GA and LIKE HETEROCHROMATIN PROTEIN 1 in ground tissue patterning in the Arabidopsis root. Plant J 58:1016–1027

    Article  CAS  PubMed  Google Scholar 

  • Davuluri GR, van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummel DA, King SR, Palys J, Uhlig J, Bramley PM, Pennings HMJ, Bowler C (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23:890–895

    Article  CAS  PubMed  Google Scholar 

  • Dennis ES, Peacock WJ (2007) Epigenetic regulation of flowering. Curr Opin Plant Biol 10:520–527

    Article  CAS  PubMed  Google Scholar 

  • Di Sansebastiano G-P, Paris N, Marc-Martin S, Neuhaus J-M (1998) Specific accumulation of GFP in a non-acidic vacuolar compartment via a C-terminal propeptide-mediated sorting pathway. Plant J 15:449–457

    Article  CAS  PubMed  Google Scholar 

  • Fei Z, Tang X, Alba RM, White JA, Ronning CM, Martin GB, Tanksley SD, Giovannoni JJ (2004) Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant J 40:47–59

    Article  PubMed  Google Scholar 

  • Gaffe J, Bru J-P, Causse M, Vidal A, Stamitti-Bert L, Carde J-P, Gallusci P (2000) LEFPS1, a tomato farnesyl pyrophosphate gene highly expressed during early fruit development. Plant Physiol 123:1351–1362

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni J (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–749

    Article  CAS  PubMed  Google Scholar 

  • Girin T, Sorefan K, Ostergaard L (2009) Meristematic sculpting in fruit development. J Exp Bot 60:1493–1502

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez N, Gévaudant F, Hernould M, Chevalier C, Mouras A (2007) The cell cycle-associated protein kinase WEE1 regulates cell size in relation to endoreduplication in developing tomato fruit. Plant J 51:642–655

    Article  CAS  PubMed  Google Scholar 

  • Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz EM, Coupland G (1997) A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 386:44–51

    Article  CAS  PubMed  Google Scholar 

  • Grant-Downton RT, Dickinson HG (2006) Epigenetics and its implications for plant biology 2. The ‘epigenetic epiphany’: epigenetics, evolution and beyond. Ann Bot 97:11–27

    Article  CAS  PubMed  Google Scholar 

  • Guitton A, Berger F (2005) Control of reproduction by Polycomb Group complexes in animals and plants. Int J Dev Biol 49:707–716

    Article  CAS  PubMed  Google Scholar 

  • Guyomarc’h S, Bertrand C, Delarue M, Zhou DX (2005) Regulation of meristem activity by chromatin remodelling. Trends Plant Sci 10:332–338

    Article  PubMed  Google Scholar 

  • Haun WJ, Laoueillé-Duprat S, O’Connell MJ, Spillane C, Grossniklaus U, Phillips AR, Kaeppler SM, Springer NM (2007) Genomic imprinting, methylation and molecular evolution of maize Enhancer of zeste (Mez) homologs. Plant J 49:325–337

    Article  CAS  PubMed  Google Scholar 

  • Hsieh TF, Fischer RL (2005) Biology of chromatin dynamics. Annu Rev Plant Biol 56:327–351

    Article  CAS  PubMed  Google Scholar 

  • Katz A, Oliva M, Mosquna A, Hakim O, Ohad N (2004) FIE and CURLY LEAF polycomb proteins interact in the regulation of homeobox gene expression during sporophyte development. Plant J 37:707–719

    Article  CAS  PubMed  Google Scholar 

  • Ketel CS, Andersen EF, Vargas ML, Suh J, Strome S, Simon JA (2005) Subunit contributions to Histone Methyltransferase activities of fly and worm Polycomb Group Complexes. Mol Cell Biol 25:6857–6868

    Article  CAS  PubMed  Google Scholar 

  • Köhler C, Grossniklaus U (2002) Epigenetic inheritance of expression states in plant development: the role of Polycomb group proteins. Curr Opin Cell Biol 14:773–779

    Article  PubMed  Google Scholar 

  • Köhler C, Villar CBR (2008) Programming of gene expression by Polycomb group proteins. Trends Cell Biol 18:236–243

    Article  PubMed  Google Scholar 

  • Köhler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W (2003) Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J 22:4804–4814

    Article  PubMed  Google Scholar 

  • Manning K, Tör M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occuring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952

    Article  CAS  PubMed  Google Scholar 

  • Matsukura C, Aoki K, Fukuda N, Mizoguchi T, Asamizu E, Saito T, Shibata D, Ezura H (2008) Comprehensive ressources for tomato functional genomics based on the miniature model tomato Micro-Tom. Curr Genom 9:436–443

    Article  CAS  Google Scholar 

  • Mayama T, Ohtsubo E, Tsuchimoto S (2003) Isolation and expression analysis of petunia CURLY LEAF-like genes. Plant Cell Physiol 44:811–819

    Article  CAS  PubMed  Google Scholar 

  • Müller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B, Miller EL, O’Connor MB, Kingston RE, Simon JA (2002) Histone methyltransferase activity of a Drosophila Polycomb Group repressor complex. Cell 111:197–208

    Article  PubMed  Google Scholar 

  • Mustilli AC, Fenzi F, Ciliento R, Alfano F, Bowler C (1999) Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell 11:145–158

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res 29:e45

    Article  CAS  PubMed  Google Scholar 

  • Schubert D, Clarenz O, Goodrich J (2005) Epigenetic control of plant development by Polycomb-group proteins. Curr Opin Plant Biol 8:553–561

    Article  CAS  PubMed  Google Scholar 

  • Schubert D, Primavesi L, Bishopp A, Roberts G, Doonan J, Jenuwein T, Goodrich J (2006) Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27. EMBO J 25:4638–4649

    Article  CAS  PubMed  Google Scholar 

  • Seymour G, Poole M, Manning K, King GJ (2008) Genetics and epigenetics of fruit development and ripening. Curr Opin Plant Biol 11:58–63

    Article  CAS  PubMed  Google Scholar 

  • Shaw P, Dolan L (2008) Chromatin and Arabidopsis root development. Sem Cell Dev Biol 19:580–585

    Article  CAS  Google Scholar 

  • Spillane C, Schmid KJ, Laoueille-Duprat S, Pien S, Escobar-Restrepo J-M, Baroux C, Gagliardini V, Page DR, Wolfe KH, Grossniklaus U (2007) Positive Darwinian selection at the imprinted MEDEA locus in plants. Nature 448:349–352

    Article  CAS  PubMed  Google Scholar 

  • Springer NM, Napoli CA, Selinger DA, Pandey R, Cone KC, Chandler VL, Kaeppler HF, Kaeppler SM (2003) Comparative analysis of SET domain proteins in maize and Arabidopsis reveals multiple duplications preceding the divergence of monocots and dicots. Plant Physiol 132:907–925

    Article  CAS  PubMed  Google Scholar 

  • Télef N, Stammitti-Bert L, Mortain-Bertrand A, Maucourt M, Carde J, Rolin D, Gallusci P (2006) Sucrose deficiency delays lycopene accumulation in tomato fruit pericarp discs. Plant Mol Biol 62:453–469

    Article  PubMed  Google Scholar 

  • Teyssier E, Bernacchia G, Maury S, How Kit A, Stammitti-Bert L, Rolin D, Gallusci P (2008) Tissue dependent variations of DNA methylation and endoreduplication levels during tomato fruit development and ripening. Planta 228:391–399

    Article  CAS  PubMed  Google Scholar 

  • Tie F, Furuyama T, Prasad-Sinha J, Jane E, Harte PJ (2001) The Drosophila Polycomb Group proteins ESC and E(Z) are present in a complex containing the histone-binding protein p55 and the histone deacetylase RPD3. Development 128:275–286

    CAS  PubMed  Google Scholar 

  • Van der Hoeven R, Ronning C, Giovannoni J, Martin G, Tanksley S (2002) Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence Tag collection and selective genomic sequencing. Plant Cell 14:1441–1456

    Article  PubMed  Google Scholar 

  • Vermaak D, Ahmad K, Henikoff S (2003) Maintenance of chromatin states: an open-and-shut case. Curr Opin Cell Biol 15:266–274

    Article  CAS  PubMed  Google Scholar 

  • von Arnim AG, Deng XW, Stacey MG (1998) Cloning vectors for the expression of green fluorescent protein fusion proteins in transgenic plants. Gene 221:35–43

    Article  Google Scholar 

  • Xu L, Shen W-H (2008) Polycomb silencing of KNOX genes confines shoot stem cell niches in Arabidopsis. Curr Biol 18:1966–1971

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A How Kit and L Boureau were recipient of a grant from the French Ministry of Research and Technology. We would like to thank E Jaligot for critical reading of this manuscript, C Cabasson for statistical analysis of the results and M. Lemaire-Chamley for providing seed enriched samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Gallusci.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

How Kit, A., Boureau, L., Stammitti-Bert, L. et al. Functional analysis of SlEZ1 a tomato Enhancer of zeste (E(z)) gene demonstrates a role in flower development. Plant Mol Biol 74, 201–213 (2010). https://doi.org/10.1007/s11103-010-9657-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9657-9

Keywords