Plant Molecular Biology

, Volume 73, Issue 4–5, pp 363–378 | Cite as

Promoter diversity in multigene transformation

  • Ariadna Peremarti
  • Richard M. Twyman
  • Sonia Gómez-Galera
  • Shaista Naqvi
  • Gemma Farré
  • Maite Sabalza
  • Bruna Miralpeix
  • Svetlana Dashevskaya
  • Dawei Yuan
  • Koreen Ramessar
  • Paul ChristouEmail author
  • Changfu Zhu
  • Ludovic Bassie
  • Teresa Capell


Multigene transformation (MGT) is becoming routine in plant biotechnology as researchers seek to generate more complex and ambitious phenotypes in transgenic plants. Every nuclear transgene requires its own promoter, so when coordinated expression is required, the introduction of multiple genes leads inevitably to two opposing strategies: different promoters may be used for each transgene, or the same promoter may be used over and over again. In the former case, there may be a shortage of different promoters with matching activities, but repetitious promoter use may in some cases have a negative impact on transgene stability and expression. Using illustrative case studies, we discuss promoter deployment strategies in transgenic plants that increase the likelihood of successful and stable multiple transgene expression.


Promoter Transgene Multigene transformation Transcriptional silencing Constitutive Spatiotemporal Inducible 



Work in our laboratory is supported by the Ministry of Science and Innovation, Spain (BFU2007-61413 and BIO2007-30738-E), a European Research Council Advanced Grant (BIOFORCE) to PC, and the CONSOLIDER Agrigenomics program funded by MICINN, Spain.


  1. Abbadi A, Domergue F, Bauer J, Napier JA, Welti R, Zähringer U, Cirpus P, Heinz E (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16:2734–2748PubMedCrossRefGoogle Scholar
  2. Afolabi AS, Worland B, Snape JW, Vain P (2004) A large-scale study of rice plants transformed with different T-DNAs provides new insights into locus composition and T-DNA linkage configurations. Theor Appl Genet 109:815–826PubMedCrossRefGoogle Scholar
  3. Albani D, Hammond-Kosack MCU, Smith C, Conlan S, Colot V, Holdsworth M, Bevan MW (1997) The wheat transcriptional activator SPA: a seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes. Plant Cell 9:171–184PubMedCrossRefGoogle Scholar
  4. Aluru M, Xu Y, Guo R, Wang Z, Li S, White W, Wang K, Rodermel S (2008) Generation of transgenic maize with enhanced provitamin A content. J Exp Bot 59:3551–3562PubMedCrossRefGoogle Scholar
  5. An G, Costa MA, Ha SB (1990) Nopaline synthase promoter is wound inducible and auxin inducible. Plant Cell 2:225–233PubMedCrossRefGoogle Scholar
  6. An YQ, McDowell JM, Huang S, McKinney EC, Chambliss S, Meagher RB (1996) Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues. Plant J 10:107–121PubMedCrossRefGoogle Scholar
  7. Atanassova R, Leterrier M, Gaillard C, Agasse A, Sagot E, Coutos-Thévenot P, Delrot S (2003) Sugar-regulated expression of a putative hexose transport gene in grape. Plant Physiol 131:326–334PubMedCrossRefGoogle Scholar
  8. Ballas N, Wong LM, Ke M, Theologis A (1995) Two auxin-responsive domains interact positively to induce expression of the early indoleacetic acid-inducible gene PS-IAA4/5. Proc Natl Acad Sci USA 92:3483–3487PubMedCrossRefGoogle Scholar
  9. Baszczynski CL, Barbour E, Miki B (1997) ALS3 promoter. US Patent 5659026Google Scholar
  10. Bhattacharyya S, Dey N, Maiti IB (2002) Analysis of cis-sequence of subgenomic transcript promoter from the Figwort mosaic virus and comparison of promoter activity with the Cauliflower mosaic virus promoters in monocot and dicot cells. Virus Res 90:47–62PubMedCrossRefGoogle Scholar
  11. Bhattacharyya S, Pattanaik S, Maiti IB (2003) Intron-mediated enhancement of gene expression in transgenic plants using chimeric constructs composed of the Peanut chlorotic streak virus (PClSV) promoter-leader and the antisense orientation of PClSV ORF VII (p7R). Planta 218:115–124PubMedCrossRefGoogle Scholar
  12. Bhomkar P, Upadhyay C, Saxena M, Muthusamy A, Prakash NS, Sarin NB (2008) Salt stress alleviation in transgenic Vigna mungo L. Hepper (blackgram) by overexpression of the glyoxalase I gene using a novel Cestrum yellow leaf curling virus (CmYLCV) promoter. Mol Breed 22:169–181CrossRefGoogle Scholar
  13. Bhullar S, Chakravarthy S, Advani S, Datta S, Pental D, Burma PK (2003) Strategies for development of functionally equivalent promoters with minimum sequence homology for transgene expression in plants: cis-elements in a novel DNA context versus domain swapping. Plant Physiol 132:988–998PubMedCrossRefGoogle Scholar
  14. Bisht NC, Jagannath A, Gupta V, Kumar Burma P, Pental D (2004) A two gene–two promoter system for enhanced expression of a restorer gene (barstar) and development of improved fertility restorer lines for hybrid seed production in crop plants. Mol Breed 14:129–144CrossRefGoogle Scholar
  15. Bisht NC, Jagannath A, Burma PK, Pradhan AK, Pental D (2007) Retransformation of a male sterile barnase line with the barstar gene as an efficient alternative method to identify male sterile-restorer combinations for heterosis breeding. Plant Cell Rep 26:727–733PubMedCrossRefGoogle Scholar
  16. Braithwaite KS, Geijskes RJ, Smith GR (2004) A variable region of the sugarcane bacilliform virus (SCBV) genome can be used to generate promoters for transgene expression in sugarcane. Plant Cell Rep 23:319–326PubMedCrossRefGoogle Scholar
  17. Callis J, Raasch JA, Vierstras RD (1990) Ubiquitin extension proteins of Arabidopsis thaliana. Structure, localization, and expression of their promoters in transgenic tobacco. J Biol Chem 265:12466–12493Google Scholar
  18. Cannell ME, Doherty A, Lazzeri PA, Barcelo P (1999) A population of wheat and tritordeum transformants showing a high degree of marker gene stability and heritability. Theor Appl Genet 99:772–784CrossRefGoogle Scholar
  19. Cao X, Jacobsen SE (2002) Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc Natl Acad Sci USA 99:16491–16498PubMedCrossRefGoogle Scholar
  20. Cazzonelli CI, McCallum EJ, Lee R, Botella JR (2005) Characterization of a strong, constitutive mung bean (Vigna radiata L.) promoter with a complex mode of regulation in planta. Transgenic Res 14:941–967PubMedCrossRefGoogle Scholar
  21. Chalfun A, Mes JJ, Mlynarova L, Aarts MGM, Angenent GC (2003) Low frequency of T-DNA based activation tagging in Arabidopsis is correlated with methylation of CaMV 35S enhancer sequences. FEBS Lett 555:459–463CrossRefGoogle Scholar
  22. Chaturvedi CP, Sawant SV, Kiran K, Mehrotra R, Lodhi N, Ansari SA, Tuli R (2006) Analysis of polarity in the expression from a multifactorial bidirectional promoter designed for high-level expression of transgenes in plants. J Biotechnol 123:1–12PubMedCrossRefGoogle Scholar
  23. Chiera JM, Bouchard RA, Dorsey SL, Park E, Buenrostro-Nava MT, Ling PP, Finer JJ (2007) Isolation of two highly active soybean (Glycine max (L.) Merr.) promoters and their characterization using a new automated image collection and analysis system. Plant Cell Rep 26:1501–1509PubMedCrossRefGoogle Scholar
  24. Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218PubMedCrossRefGoogle Scholar
  25. Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689PubMedCrossRefGoogle Scholar
  26. Colot V, Robert LS, Kavanagh TA, Bevan MW, Thompson RD (1987) Localization of sequences in wheat endosperm protein genes which confer tissue-specific expression in tobacco. EMBO J 6:3559–3564PubMedGoogle Scholar
  27. Cornejo MJ, Luth D, Blankenship KM, Anderson OD, Blechl AE (1993) Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol Biol 23:567–581PubMedCrossRefGoogle Scholar
  28. De Block M, Debrouwer D (1991) Two T-DNAs co-transformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor Appl Genet 82:257–263CrossRefGoogle Scholar
  29. De Buck S, Jacobs A, Van Montagu M, Depicker A (1999) The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant J 20:295–304PubMedCrossRefGoogle Scholar
  30. Dey N, Maiti IB (1999) Structure and promoter/leader deletion analysis of mirabilis mosaic virus (MMV) full-length transcript promoter in transgenic plants. Plant Mol Biol 40:771–782PubMedCrossRefGoogle Scholar
  31. Dhadi SR, Krom N, Ramakrishna W (2009) Genome-wide comparative analysis of putative bidirectional promoters from rice, Arabidopsis and Populus. Gene 429:65–73PubMedCrossRefGoogle Scholar
  32. Ellis JG, Tokuhisa JG, Llewellyn DJ, Bouchez D, Singh K, Dennis ES, Peacock WJ (1993) Does the ocs-element occur as a functional component of the promoters of plant genes? Plant J 4:433–443PubMedCrossRefGoogle Scholar
  33. Fang RX, Nagy F, Sivasubramaniam S, Chua NH (1989) Multiple cis-regulatory elements for maximal expression of the Cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell 1:141–150PubMedCrossRefGoogle Scholar
  34. Farre G, Ramessar K, Twyman RM, Capell T, Christou P (2010) The humanitarian impact of plant biotechnology: recent breakthroughs vs bottlenecks for adoption. Curr Opin Plant Biol (in press; doi: 10.1016/j.pbi.2009.11.002)
  35. Fiume E, Christou P, Giani S, Breviario D (2004) Introns are key regulatory elements of rice tubulin expression. Planta 218:693–703PubMedCrossRefGoogle Scholar
  36. Fujisawa M, Takita E, Harada H, Sakurai N, Suzuki H, Ohyama K, Shibata D, Misawa N (2009) Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. J Exp Bot 60:1319–1332PubMedCrossRefGoogle Scholar
  37. Furtado A, Henry RJ (2005) The wheat Em promoter drives reporter gene expression in embryo and aleurone tissue of transgenic barley and rice. Plant Biotechnol J 3:421–434PubMedCrossRefGoogle Scholar
  38. Gahakwa D, Maqbool SB, Fu X, Sudhakar D, Christou P, Kohli A (2000) Transgenic rice as a system to study the stability of transgene expression: multiple heterologous transgenes show similar behaviour in diverse genetic backgrounds. Theor Appl Genet 101:388–399CrossRefGoogle Scholar
  39. Garbarino JE, Oosumi T, Belknap WR (1995) Isolation of a polyubiquitin promoter and its expression in transgenic potato plants. Plant Physiol 109:1371–1378PubMedCrossRefGoogle Scholar
  40. Godard KA, Byun-McKay A, Levasseur C, Plant A, Séguin A, Bohlmann J (2007) Testing of a heterologous, wound- and insect-inducible promoter for functional genomics studies in conifer defense. Plant Cell Rep 26:2083–2090PubMedCrossRefGoogle Scholar
  41. Goddijn OJM, Lindsey K, van der Lee FM, Klap JC, Sijmons PC (1993) Differential gene expression in nematode induced feeding structures of transgenic plant harbouring promoter-gusA fusion constructs. Plant J 4:863–873PubMedCrossRefGoogle Scholar
  42. Grierson C, Du JS, de Torres Zabala M, Beggs K, Smith C, Holdsworth M, Bevan M (1994) Separate cis sequences and trans factors direct metabolic and developmental regulation of a potato tuber storage protein gene. Plant J 5:815–826PubMedCrossRefGoogle Scholar
  43. Guevara-García A, Mosqueda-Cano G, Argüello-Astorga G, Simpson J, Herrera-Estrella L (1993) Tissue-specific and wound-inducible pattern of expression of the mannopine synthase promoter is determined by the interaction between positive and negative cis-regulatory elements. Plant J 4:495–505PubMedCrossRefGoogle Scholar
  44. Guilfoyle TJ (1999) Auxin-regulated genes and promoters. In: Hooykaas PJJ, Hall M, Libbenga KL (eds) Biochemistry and molecular biology of plant hormones. Elsevier, London, pp 423–459CrossRefGoogle Scholar
  45. He C, Lin Z, McElroy D, Wu R (2009a) Identification of a rice actin2 gene regulatory region for high-level expression of transgenes in monocots. Plant Biotechnol J 7:227–239PubMedCrossRefGoogle Scholar
  46. He XJ, Hsu YF, Pontes O, Zhu J, Lu J, Bressan RA, Pikaard C, Wang CS, Zhu JK (2009b) NRPD4, a protein related to the RPB4 subunit of RNA polymerase II, is a component of RNA polymerases IV and V and is required for RNA-directed DNA methylation. Genes Dev 23:318–330PubMedCrossRefGoogle Scholar
  47. Hermann SR, Harding RM, Dale JL (2001) The banana actin 1 promoter drives near-constitutive transgene expression in vegetative tissues of banana (Musa spp.). Plant Cell Rep 20:525–530CrossRefGoogle Scholar
  48. Herr AJ, Jensen MB, Dalmay T, Baulcombe DC (2005) RNA polymerase IV directs silencing of endogenous DNA. Science 308:118–120PubMedCrossRefGoogle Scholar
  49. Jeon J-S, Chung Y-Y, Lee S, Yi G-H, Oh B-G, An G (1999) Isolation and characterization of an anther-specific gene, RA8, from rice (Oryza sativa, L). Plant Mol Biol 39:35–44PubMedCrossRefGoogle Scholar
  50. Jones JDG, Gilbert DE, Grady KL, Jorgensen RA (1987) T-DNA structure and gene expression in petunia plants transformed by Agrobacterium tumefaciens C58 derivates. Mol Gen Genet 207:478–485CrossRefGoogle Scholar
  51. Jorgensen RA, Snyder C, Jones JDG (1987) T-DNA is organized predominantly in inverted repeat structures in plants transformed with Agrobacterium tumefaciens C58 derivatives. Mol Gen Genet 207:471–477CrossRefGoogle Scholar
  52. José-Estanyol M, Perez P, Puigdomenech P (2005) Expression of the promoter of HyPRP, an embryo-specific gene from Zea mays in maize and tobacco transgenic plants. Gene 356:146–152PubMedCrossRefGoogle Scholar
  53. Kanno T, Mette MF, Kreil DP, Aufsatz W, Matzke M, Matzke AJ (2004) Involvement of putative SNF2 chromatin remodeling protein DRD1 in RNA-directed DNA methylation. Curr Biol 14:801–805PubMedCrossRefGoogle Scholar
  54. Kanno T, Huettel B, Mette MF, Aufsatz W, Jaligot E, Daxinger L, Kreil DP, Matzke M, Matzke AJ (2005) Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nature Genet 37:761–765PubMedCrossRefGoogle Scholar
  55. Karunanandaa B, Qi Q, Hao M, Baszis SR, Jensen PK, Wong YH, Jiang J, Venkatramesh M, Gruys KJ, Moshiri F, Post-Beittenmiller D, Weiss JD, Valentin HE (2005) Metabolically engineered oilseed crops with enhanced seed tocopherol. Metab Eng 7:384–400PubMedCrossRefGoogle Scholar
  56. Kawalleck P, Somssich IE, Feldbrugge M, Hahlbrock K, Weisshaar B (1993) Polyubiquitin gene expression and structural properties of the ubi 2–4 gene in Petroselinum crispum. Plant Mol Biol 21:673–684PubMedCrossRefGoogle Scholar
  57. Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302PubMedCrossRefGoogle Scholar
  58. Keddie JS, Tsiantis M, Piffanelli P, Cella R, Hatzopoulos P, Murphy DJ (1994) A seed-specific Brassica napus oleosin promoter interacts with a G-box-specific protein and may be bi-directional. Plant Mol Biol 24:327–340PubMedCrossRefGoogle Scholar
  59. Keil M, Sánchez-Serrano JJ, Willmitzer L (1989) Both wound-inducible and tuber-specific expression are mediated by the promoter of a single member of the potato proteinase inhibitor II gene family. EMBO J 5:1323–1330Google Scholar
  60. Keinonen-Mettälä K, Pappinen A, Von Weissenberg K (1998) Comparisons of the efficiency of some promoters in silver birch (Betula pendula). Plant Cell Rep 17:356–361CrossRefGoogle Scholar
  61. Kloti A, He X, Potrykus I, Hohn T, Futterer J (2002) Tissue-specific silencing of a transgene in rice. Proc Natl Acad Sci USA 99:10881–10886PubMedCrossRefGoogle Scholar
  62. Kohli A, Griffiths S, Palacios N, Twyman RM, Vain P, Laurie DA, Christou P (1999) Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology-mediated recombination. Plant J 17:591–601PubMedCrossRefGoogle Scholar
  63. Kohli A, Twyman RM, Abranches A, Wegel E, Shaw P, Christou P, Stoger E (2003) Transgene integration, organization and interaction in plants. Plant Mol Biol 52:247–258PubMedCrossRefGoogle Scholar
  64. Koltunow AM, Truettner J, Cox KH, Walroth M, Goldberg RB (1990) Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2:1201–1224PubMedCrossRefGoogle Scholar
  65. Kooter J, Matzke MA, Meyer P (1999) Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci 4:340–346PubMedCrossRefGoogle Scholar
  66. Kumar S, Fladung M (2000) Transgene repeats in aspen: molecular characterisation suggests simultaneous integration of independent T-DNAs into receptive hotspots in the host genome. Mol Gen Genet 264:20–28PubMedCrossRefGoogle Scholar
  67. Kumar S, Fladung M (2002) Transgene integration in aspen: structures of integration sites and mechanism of T-DNA integration. Plant J 31:543–551PubMedCrossRefGoogle Scholar
  68. Lam E, Benfey PN, Gilmartin PM, Fang RX, Chua NH (1989) Site-specific mutations alter in vitro factor and change promoter expression pattern in transgenic plants. Proc Natl Acad Sci USA 86:7890–7894PubMedCrossRefGoogle Scholar
  69. Leisy DJ, Hnilo J, Zhao Y, Okita TW (1989) Expression of a rice glutelin promoter in transgenic tobacco. Plant Mol Biol 14:41–50CrossRefGoogle Scholar
  70. Lu CA, Lim EK, Yu SM (1998) Sugar response sequence in the promoter of a rice alpha-amylase gene serves as a transcriptional enhancer. J Biol Chem 273:10120–10131PubMedCrossRefGoogle Scholar
  71. Luo K, Zhang G, Deng W, Luo F, Qiu K, Pei Y (2008) Functional characterization of a cotton late embryogenesis-abundant D113 gene promoter in transgenic tobacco. Plant Cell Rep 27:707–717PubMedCrossRefGoogle Scholar
  72. Ma JK, Drake PM, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805PubMedCrossRefGoogle Scholar
  73. Maiti IB, Shepherd RJ (1998) Isolation and expression analysis of Peanut chlorotic streak caulimovirus (PClSV) full-length transcript (FLt) promoter in transgenic plants. Biochem Biophys Res Commun 244:440–444PubMedCrossRefGoogle Scholar
  74. Mandel T, Fleming AJ, Krähenbühl R, Kuhlemeier C (1995) Definition of constitutive gene expression in plants: the translation initiation factor 4A gene as a model. Plant Mol Biol 29:995–1004PubMedCrossRefGoogle Scholar
  75. Mariani C, De Beuckeleer M, Truettner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimeric ribonuclease gene. Nature 347:737–741CrossRefGoogle Scholar
  76. Mariani C, Gossele V, De Beuckeleer M, De Block M, Goldberg RB, De Greef W, Leemans J (1992) A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature 357:384–387CrossRefGoogle Scholar
  77. Marris C, Gallois P, Copley J, Kreis M (1988) The 5′ flanking region of a barley B hordein gene controls tissue and developmental specific CAT expression in tobacco plants. Plant Mol Biol 10:359–366CrossRefGoogle Scholar
  78. Martinez A, Sparks C, Hart CA, Thompson J, Jepson I (1999) Ecdysone agonist inducible transcription in transgenic tobacco plants. Plant J 19:97–106PubMedCrossRefGoogle Scholar
  79. Marzabal P, Busk PK, Ludevid MD, Torrent M (1998) The bifactorial endosperm box of gamma-zein gene: characterisation and function of the Pb3 and GZM cis-acting elements. Plant J 16:41–52PubMedCrossRefGoogle Scholar
  80. McElroy D, Zhang W, Cao J, Wu R (1990) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:163–171PubMedCrossRefGoogle Scholar
  81. McElroy D, Blowers AD, Jenes B, Wu R (1991) Construction of expression vectors based on the rice actin 1 (Act1) 50 region for use in monocot transformation. Mol Gen Genet 231:150–160PubMedCrossRefGoogle Scholar
  82. Medberry SL, Lockhart BEL, Olszewski NE (1992) The Commelina yellow mottle virus promoter is a strong promoter in vascular and reproductive tissues. Plant Cell 4:185–192PubMedCrossRefGoogle Scholar
  83. Mehlo L, Mazithulela G, Twyman RM, Boulton MI, Davies JW, Christou P (2000) Structural analysis of transgene rearrangements and effects on expression in transgenic maize plants generated by particle bombardment. Maydica 45:277–287Google Scholar
  84. Mette MF, van der Winden J, Matzke MA, Matzke AJM (1999) Production of aberrant promoter transcripts contributes to methylation and silencing of unlinked homologous promoters in trans. EMBO J 18:241–248PubMedCrossRefGoogle Scholar
  85. Mette MF, Aufsatz W, van der Winden J, Matzke MA, Matzke AJM (2000) Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 19:5194–5201PubMedCrossRefGoogle Scholar
  86. Mitra A, Han J, Zhang ZJ, Mitra A (2009) The intergenic region of Arabidopsis thaliana cab1 and cab2 divergent genes functions as a bidirectional promoter. Planta 229:1015–1022PubMedCrossRefGoogle Scholar
  87. Mitsuhara I, Ugaki M, Hirochika H, Ohshima M, Murakami T, Gotoh Y, Katayose Y, Nakamura S, Honkura R, Nishimiya S, Ueno K, Mochizuki A, Tanimoto H, Tsugawa H, Otsuki Y, Ohashi Y (1996) Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol 37:49–59PubMedGoogle Scholar
  88. Mourrain P, van Blokland R, Kooter JM, Vaucheret H (2007) A single transgene locus triggers both transcriptional and post-transcriptional silencing through double-stranded RNA production. Planta 225:365–379PubMedCrossRefGoogle Scholar
  89. Naqvi S, Farre G, Sanahuja G, Capell T, Zhu C, Christou P (2009a) When more is better: multigene engineering in plants. Trends Plant Sci 15:48–56PubMedCrossRefGoogle Scholar
  90. Naqvi S, Zhu C, Farre G, Ramessar K, Bassie L, Breitenbach J, Perez Conesa D, Ros G, Sandmann G, Capell T, Christou P (2009b) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci USA 106:7762–7767PubMedCrossRefGoogle Scholar
  91. Ni M, Cui D, Gelvin SB (1996) Sequence-specific interactions of wound-inducible nuclear factors with mannopine synthase 2′ promoter wound-responsive elements. Plant Mol Biol 30:77–96PubMedCrossRefGoogle Scholar
  92. Norris SR, Meyer SE, Callis J (1993) The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression. Plant Mol Biol 21:895–906PubMedCrossRefGoogle Scholar
  93. Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the Cauliflower mosaic virus 35S promoter. Nature 313:810–812PubMedCrossRefGoogle Scholar
  94. Ohtsuki S, Levine M, Cai HN (1998) Different core promoters possess distinct regulatory activities in the Drosophila embryo. Genes Dev 12:547–556PubMedCrossRefGoogle Scholar
  95. Oñate L, Vicente-Carbajosa J, Lara P, Díaz I, Carbonero P (1999) Barley BLZ2, a seed-specific bZIP protein that interacts with BLZ1 in vivo and activates transcription from the GCN4-like motif of B-hordein promoters in barley endosperm. J Biol Chem 274:9175–9182PubMedCrossRefGoogle Scholar
  96. Onodera Y, Suzuki A, Wu CY, Washida H, Takaiwa F (2001) A rice functional transcriptional activator, RISBZ1, responsible for endosperm-specific expression of storage protein genes through GCN4 motif. J Biol Chem 276:14139–14152PubMedGoogle Scholar
  97. Onodera Y, Haag JR, Ream T, Nunes PC, Pontes O, Pikaard CS (2005) Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120:613–622PubMedCrossRefGoogle Scholar
  98. Opsahl-Sorteberg HG, Divon HH, Nielsen PS, Kalla R, Hammon-Kosach M, Shimamoto K, Kohli A (2004) Identification of a 49-bp fragment of the HvLTP2 promoter directing aleurone cell specific expression. Gene 341:49–58PubMedCrossRefGoogle Scholar
  99. Padidam M, Gore M, Lu DL, Smirnova O (2003) Chemical-inducible, ecdysone receptor-based gene expression system for plants. Transgenic Res 12:101–109PubMedCrossRefGoogle Scholar
  100. Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, Stransky H, Schöffl F (2004) Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiol 136:3148–3158PubMedCrossRefGoogle Scholar
  101. Paul W, Hodge R, Smartt S, Draper J, Scott R (1992) The isolation and characterization of the tapetum specific Arabidopsis thaliana A9 gene. Plant Mol Biol 19:611–622PubMedCrossRefGoogle Scholar
  102. Pontier D, Yahubyan G, Vega D, Bulski A, Saez-Vasquez J, Hakimi MA, Lerbs-Mache S, Colot V, Lagrange T (2005) Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev 19:2030–2040PubMedCrossRefGoogle Scholar
  103. Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell Dev Biol Plant 40:1–22Google Scholar
  104. Qu LQ, Takaiwa F (2004) Evaluation of tissue specificity and expression strength of rice seed component gene promoters in transgenic rice. Plant Biotechnol J 2:113–125CrossRefGoogle Scholar
  105. Raclaru M, Gruber J, Kumar R, Sadre R, Lühs W, Zarhloul MK, Friedt W, Frentzen M, Weier D (2006) Increase of the tocochromanol content in transgenic Brassica napus seeds by overexpression of key enzymes involved in prenylquinone biosynthesis. Mol Breed 18:93–107CrossRefGoogle Scholar
  106. Raho G, Lupotto E, Hartings H, Della Torre AP, Perrotta C, Marmiroli N (1996) Tissue-specific expression and environmental regulation of the barley Hvhspi7 gene promoter in transgenic tobacco plants. J Exp Bot 47:1587–1594CrossRefGoogle Scholar
  107. Rai M, Datta K, Parkhi V, Tan J, Oliva N, Chawla HS, Datta SK (2007) Variable T-DNA linkage configuration affects inheritance of carotenogenic transgenes and carotenoid accumulation in transgenic indica rice. Plant Cell Rep 26:1221–1231PubMedCrossRefGoogle Scholar
  108. Rancé I, Norre F, Gruber V, Theisen M (2002) Combination of viral promoter sequences to generate highly active promoters for heterologous therapeutic protein over-expression in plants. Plant Sci 162:833–842CrossRefGoogle Scholar
  109. Rushton PJ, Reinstadler A, Lipka V, Lippok B, Somssich IE (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell 14:749–762PubMedCrossRefGoogle Scholar
  110. Sadanandom A, Piffanelli P, Knott T, Robinson C, Sharpe A, Lydiate D, Murphy D, Fairbairn DJ (1996) Identification of a peptide methionine sulphoxide reductase gene in an oleosin promoter from Brassica napus. Plant J 10:235–242PubMedCrossRefGoogle Scholar
  111. Saidi Y, Finka A, Chakhporanian M, Zrÿd JP, Schaefer DG, Goloubinoff P (2005) Controlled expression of recombinant proteins in Physcomitrella patens by a conditional heat-shock promoter: a tool for plant research and biotechnology. Plant Mol Biol 59:697–711PubMedCrossRefGoogle Scholar
  112. Sasaki K, Yuichi O, Hiraga S, Gotoh Y, Seo S, Mitsuhara I, Ito H, Matsui H, Ohashi Y (2007) Characterization of two rice peroxidase promoters that respond to blast fungus-infection. Mol Genet Genomics 278:709–722PubMedCrossRefGoogle Scholar
  113. Sawant S, Singh PK, Madanala R, Tuli R (2001) Designing of an artificial expression cassette for the high-level expression of transgenes in plants. Theor Appl Genet 102:635–644CrossRefGoogle Scholar
  114. Schenk PM, Remans T, Sagi L, Elliott AR, Dietzgen RG, Swennen R, Ebert PR, Grof CPL, Manners JM (2001) Promoters for pregenomic RNA of banana streak badnavirus are active for transgene expression in monocot and dicot plants. Plant Mol Biol 47:399–412PubMedCrossRefGoogle Scholar
  115. Schernthaner JP, Matzke MA, Matzke AJM (1988) Endosperm-specific activity of a zein gene promoter in transgenic tobacco plants. EMBO J 7:1249–1255PubMedGoogle Scholar
  116. Schmidt RJ, Ketudat M, Aukerman MJ, Hoschek G (1992) Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes. Plant Cell 4:689–700PubMedCrossRefGoogle Scholar
  117. Schubert D, Lechtenberg B, Forsbach A, Gils M, Bahadur S, Schmidt R (2004) Silencing in Arabidopsis T-DNA transformants: the predominant role of a gene-specific RNA sensing mechanism versus position effects. Plant Cell 16:2561–2572PubMedCrossRefGoogle Scholar
  118. Schünmann PHD, Llewellyn DJ, Surin B, Boevink P, Feyter RCD, Waterhouse PM (2003a) A suite of novel promoters and terminators for plant biotechnology. Functional Plant Biol 30:443–452CrossRefGoogle Scholar
  119. Schünmann PHD, Surin B, Waterhouse PM (2003b) A suite of novel promoters and terminators for plant biotechnology. II. The pPLEX series for use in monocots. Functional Plant Biol 30:453–460CrossRefGoogle Scholar
  120. Singh A, Sahi C, Grover A (2009) Chymotrypsin protease inhibitor gene family in rice: genomic organization and evidence for the presence of a bidirectional promoter shared between two chymotrypsin protease inhibitor genes. Gene 428:9–19PubMedCrossRefGoogle Scholar
  121. Skriver K, Olsen FL, Rogers JC, Mundy J (1991) Cis-acting DNA elements responsive to gibberellin and its antagonist abscisic acid. Proc Natl Acad Sci USA 88:7266–7270PubMedCrossRefGoogle Scholar
  122. Slater A, Scott N, Fowler M (2003) Plant Molecular Biology. Oxford University Press, OxfordGoogle Scholar
  123. Spencer TM, O’Brien JV, Start WG, Adams TR, Gordon-Kamm WJ, Lemaux PG (1992) Segregation of transgenes in maize. Plant Mol Biol 18:201–210PubMedCrossRefGoogle Scholar
  124. Stavolone L, Ragozzino A, Hohn T (2003) Characterization of Cestrum yellow leaf curling virus: a new member of the caulimoviridae family. J Gen Virol 84:3459–3464PubMedCrossRefGoogle Scholar
  125. Stoger E, Williams S, Keen D, Christou P (1998) Molecular characteristics of transgenic wheat and the effect on transgene expression. Transgenic Res 7:463–471CrossRefGoogle Scholar
  126. Sun TP, Gubler F (2004) Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol 55:197–223PubMedCrossRefGoogle Scholar
  127. Sun AQ, Yi SY, Yang JY, Zhao CM, Liu J (2006) Identification and characterization of a heat-inducible ftsH gene from tomato (Lycopersicon esculentum Mill.). Plant Sci 170:551–562CrossRefGoogle Scholar
  128. Takaiwa F, Oono K, Kato A (1991) Analysis of the 5′ flanking region responsible for the endosperm-specific expression of a rice glutelin chimeric gene in transgenic tobacco. Plant Mol Biol 16:49–58PubMedCrossRefGoogle Scholar
  129. Takaiwa F, Yamanouchi U, Yoshihara T, Washida H, Tanabe F, Kato A, Yamada K (1996) Characterization of common cis-regulatory elements responsible for the endosperm-specific expression of members of the rice glutelin multigene family. Plant Mol Biol 30:1207–1221PubMedCrossRefGoogle Scholar
  130. Tiana L, Wub K, Hannama C, Latoszek-Greena M, Sibbalda S, Huc M, Browna DCW, Mikic B (2005) Analysis and use of the tobacco eIF4A–10 promoter elements for transgene expression. J Plant Physiol 162:1355–1366CrossRefGoogle Scholar
  131. Torbert KA, Gopalraj M, Medberry SL, Olszewski NE, Somers DA (1998) Expression of the Commelina yellow mottle virus promoter in transgenic oat. Plant Cell Rep 17:284–287CrossRefGoogle Scholar
  132. Twyman RM (2003) Growth and development: control of gene expression, regulation of transcription. In: Thomas B, Murphy DJ, Murray B (eds) Encyclopedia of Applied Plant Sciences. Elsevier Science, London, pp 558–567Google Scholar
  133. Unger E, Cigan AM, Trimnell M, Xu RJ, Kendall T, Roth B, Albertsen M (2002) A chimeric ecdysone receptor facilitates methoxyfenozide-dependent restoration of male fertility in ms45 maize. Transgenic Res 11:455–465PubMedCrossRefGoogle Scholar
  134. Urwin PE, Moller SG, Lilley CJ, McPherson MJ, Atkinson HJ (1997) Continual green fluorescent protein monitoring of Cauliflower mosaic virus 35S promoter activity in nematode-induced feeding cells in Arabidopsis thaliana. Mol Plant Microbe Interact 10:394–400PubMedCrossRefGoogle Scholar
  135. Vain P, Finer KR, Engler DE, Pratt RC, Finer JJ (1996) Intron-mediated enhancement of gene expression in maize (Zea mays L.) and bluegrass (Poa pratensis L.). Plant Cell Rep 15:489–494CrossRefGoogle Scholar
  136. Valentin HE, Mitsky TA (2002) TYRA genes and uses thereof. Patent Application WO 02/089561 A1Google Scholar
  137. Veena, Reddy VS, Sopory SK (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J 17:385–395PubMedCrossRefGoogle Scholar
  138. Verdaguer B, de Kochko A, Beachy RN, Fauquet C (1996) Isolation and expression in transgenic tobacco and rice plants, of the Cassava vein mosaic virus (CsVMV) promoter. Plant Mol Biol 31:1129–1139PubMedCrossRefGoogle Scholar
  139. Vicente-Carbajosa J, Oñate L, Lara P, Diaz I, Carbonero P (1998) Barley BLZ1: a bZIP transcriptional activator that interacts with endosperm-specific gene promoters. Plant J 13:629–640PubMedCrossRefGoogle Scholar
  140. Wierzbicki AT, Haag JR, Pikaard CS (2008) Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135:635–648PubMedCrossRefGoogle Scholar
  141. Wobus U, Borisjuk L, Panitz R, Manteuffel R, Baumlein H, Wohlfart T, Heim U, Weber H, Misera S, Weschke W (1995) Control of seed storage protein gene expression: new aspects on an old story. J Plant Physiol 145:592–599Google Scholar
  142. Woodger F, Millar A, Murray F, Jacobsen J, Gubler F (2003) The role of GAMYB transcription factors in GA-regulated gene expression. J Plant Growth Regul 22:176–184CrossRefGoogle Scholar
  143. Wu CY, Suzuki A, Washida H, Takaiwa F (1998) The GCN4 motif in a rice glutelin gene is essential for endosperm-specific gene expression and is activated by Opaque-2 in transgenic rice plants. Plant J 14:673–683PubMedCrossRefGoogle Scholar
  144. Wu H, Michler CH, LaRussa L, Davis JM (1999) The pine Pschi4 promoter directs wound-induced transcription. Plant Sci 142:199–207CrossRefGoogle Scholar
  145. Xie M, He Y, Gan S (2001) Bidirectionalization of polar promoters in plants. Nature Biotechnol 19:677–679CrossRefGoogle Scholar
  146. Xie Z, Johansen L, Gustafson A, Kasschau K, Lellis A, Zilberman D, Jacobsen S, Carrington J (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:E104PubMedCrossRefGoogle Scholar
  147. Xu D, McElroy D, Thornburg RW, Wu R (1993) Systemic induction of a potato pin2 promoter by wounding, methyl jasmonate, and abscisic acid in transgenic rice plants. Plant Mol Biol 22:573–588PubMedCrossRefGoogle Scholar
  148. Yang G, Nakamura H, Ichikawa H, Kitano H, Komatsu S (2006) OsBLE3, a brassinolide-enhanced gene, is involved in the growth of rice. Phytochemistry 67:1442–1454PubMedCrossRefGoogle Scholar
  149. Yevtushenko DP, Sidorov VA, Romero R, Kay WW, Misra S (2004) Wound-inducible promoter from poplar is responsive to fungal infection in transgenic potato. Plant Sci 167:715–724CrossRefGoogle Scholar
  150. Zhang W, McElroy D, Wu R (1991) Analysis of rice Act1 50 region activity in transgenic rice plants. Plant Cell 3:1155–1165PubMedCrossRefGoogle Scholar
  151. Zhang C, Gai Y, Wang W, Zhu Y, Chen X, Jiang X (2008) Construction and analysis of a plant transformation binary vector pBDGG harboring a bi-directional promoter fusing dual visible reporter genes. J Genet Genomics 35:245–249PubMedCrossRefGoogle Scholar
  152. Zheng Z, Kawagoe Y, Xiao S, Li Z, Okita TW, Hau TL, Lin A, Murai N (1993) 5′ Distal and proximal cis-acting regulation elements are required for developmental control of a rice seed storage protein glutelin gene. Plant J 4:357–366PubMedCrossRefGoogle Scholar
  153. Zheng X, Deng W, Luo K, Duan H, Chen Y, McAvoy R, Song S, Pei Y, Li Y (2007) The Cauliflower mosaic virus (CaMV) 35S promoter sequence alters the level and patterns of activity of adjacent tissue- and organ-specific gene promoters. Plant Cell Rep 26:1195–1203PubMedCrossRefGoogle Scholar
  154. Zhu QH, Ramm K, Eamens AL, Dennis ES, Upadhyaya NM (2006) Transgene structures suggest that multiple mechanisms are involved in T-DNA integration in plants. Plant Sci 171:308–322CrossRefGoogle Scholar
  155. Zhu C, Naqvi S, Gomez-Galera S, Pelacho AM, Capell T, Christou P (2007) Transgenic strategies for the nutritional enhancement of plants. Trends Plant Sci 12:548–555PubMedCrossRefGoogle Scholar
  156. Zhu C, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell T (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci USA 105:18232–18237PubMedCrossRefGoogle Scholar
  157. Zilberman D, Cao X, Jacobsen SE (2003) ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299:716–719PubMedCrossRefGoogle Scholar
  158. Zourelidou M, de Torres-Zabala M, Smith C, Bevan MW (2002) Storekeeper defines a new class of plant-specific DNA-binding proteins and is a putative regulator of patatin expression. Plant J 30:489–497PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Ariadna Peremarti
    • 1
  • Richard M. Twyman
    • 2
  • Sonia Gómez-Galera
    • 1
  • Shaista Naqvi
    • 1
  • Gemma Farré
    • 1
  • Maite Sabalza
    • 1
  • Bruna Miralpeix
    • 1
  • Svetlana Dashevskaya
    • 1
  • Dawei Yuan
    • 1
  • Koreen Ramessar
    • 1
  • Paul Christou
    • 1
    • 3
    Email author
  • Changfu Zhu
    • 1
  • Ludovic Bassie
    • 1
  • Teresa Capell
    • 1
  1. 1.Departament de Producció Vegetal i Ciència Forestal, ETSEAUniversitat de LleidaLleidaSpain
  2. 2.Department of Biological SciencesUniversity of WarwickCoventryUK
  3. 3.Institució Catalana de Recerca i Estudis AvançatsBellaterraSpain

Personalised recommendations