Skip to main content
Log in

Functional analyses of differentially expressed isoforms of the Arabidopsis inositol phosphorylceramide synthase

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript


Sphingolipids are key components of eukaryotic plasma membranes that are involved in many functions, including the formation signal transduction complexes. In addition, these lipid species and their catabolites function as secondary signalling molecules in, amongst other processes, apoptosis. The biosynthetic pathway for the formation of sphingolipid is largely conserved. However, unlike mammalian cells, fungi, protozoa and plants synthesize inositol phosphorylceramide (IPC) as their primary phosphosphingolipid. This key step involves the transfer of the phosphorylinositol group from phosphatidylinositol (PI) to phytoceramide, a process catalysed by IPC synthase in plants and fungi. This enzyme activity is at least partly encoded by the AUR1 gene in the fungi, and recently the distantly related functional orthologue of this gene has been identified in the model plant Arabidopsis. Here we functionally analysed all three predicted Arabidopsis IPC synthases, confirming them as aureobasidin A resistant AUR1p orthologues. Expression profiling revealed that the genes encoding these orthologues are differentially expressed in various tissue types isolated from Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others



Aureobasidin A


Bovine serum albumin




Inositol phosphorylceramide

NDB C6-ceramide:

6-((N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino) hexanoyl)sphingosine




Synthetic minimal media with glucose


Synthetic minimal media with galactose




  • Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Gorlach J (2001) Growth stage-based phenotypic analysis of arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510

    Article  CAS  PubMed  Google Scholar 

  • Brodersen P, Petersen M, Pike HM, Olszak B, Skov S, Odum N, Jorgensen LB, Brown RE, Mundy J (2002) Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev 16:490–502

    Article  CAS  PubMed  Google Scholar 

  • Bromley PE, Li YNO, Murphy SM, Sumner CM, Lynch DV (2003) Complex sphingolipid synthesis in plants: characterization of inositolphosphorylceramide synthase activity in bean microsomes. Arch Biochem Biophys 417:219–226

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Han G, Dietrich CR, Dunn TM, Cahoon EB (2006) The essential nature of sphingolipids in plants as revealed by the functional identification and characterization of the Arabidopsis LCB1 subunit of serine palmitoyltransferase. Plant Cell 18:3576–3593

    Article  CAS  PubMed  Google Scholar 

  • Denny PW, Field MC, Smith DF (2001) GPI-anchored proteins and glycoconjugates segregate into lipid rafts in Kinetoplastida. FEBS Lett 491:148–153

    Article  CAS  PubMed  Google Scholar 

  • Denny PW, Shams-Eldin H, Price HP, Smith DF, Schwarz RT (2006) The protozoan inositol phosphorylceramide synthase: a novel drug target which defines a new class of sphingolipid synthase. J Biol Chem 281:28200–28209

    Article  CAS  PubMed  Google Scholar 

  • Dickson RC, Sumanasekera C, Lester RL (2006) Functions and metabolism of sphingolipids in Saccharomyces cerevisiae. Prog Lipid Res 45:447–465

    Article  CAS  PubMed  Google Scholar 

  • Dunn TM, Lynch DL, Michaelson LV, Napier JA (2004) A post-genomic approach to understanding sphingolipid metabolism in Arabidopsis thaliana. Ann Bot 93:483–497

    Article  CAS  PubMed  Google Scholar 

  • Fernandis AZ, Wenk MR (2007) Membrane lipids as signaling molecules. Curr Opin Lipidol 18:121–128

    Article  CAS  PubMed  Google Scholar 

  • Futerman AH, Hannun YA (2004) The complex life of simple sphingolipids. EMBO reports 5:777–782

    Article  CAS  PubMed  Google Scholar 

  • Grennan AK (2006) Genevestigator. Facilitating web-based gene-expression analysis. Plant Physiol 141:1164–1166

    Article  CAS  PubMed  Google Scholar 

  • Guan XL, Wenk MR (2006) Mass spectrometry-based profiling of phospholipids and sphingolipids in extracts from Saccharomyces cerevisiae. Yeast 23:465–477

    Article  CAS  PubMed  Google Scholar 

  • Hanada K, Nishijima M, Kiso M, Hasegawa A, Fujita S, Ogawa T, Akamatsu Y (1992) Sphingolipids are essential for the growth of Chinese hamster ovary cells. Restoration of the growth of a mutant defective in sphingoid base biosynthesis by exogenous sphingolipids. J Biol Chem 267:23527–23533

    CAS  PubMed  Google Scholar 

  • Huitema K, van den Dikkenberg J, Brouwers JF, Holthuis JC (2004) Identification of a family of animal sphingomyelin synthases. EMBO J 23:33–44

    Article  CAS  PubMed  Google Scholar 

  • Liang H, Yao N, Song JT, Luo S, Lu H, Greenberg JT (2003) Ceramides modulate programmed cell death in plants. Genes Dev 17:2636–2641

    Article  CAS  PubMed  Google Scholar 

  • Luberto C, Stonehouse MJ, Collins EA, Marchesini N, El-Bawab S, Vasil AI, Vasil ML, Hannun YA (2003) Purification, characterization, and identification of a sphingomyelin synthase from Pseudomonas aeruginosa. PlcH is a multifunctional enzyme. J Biol Chem 278:32733–32743

    Article  CAS  PubMed  Google Scholar 

  • Magee T, Prinen N, Alder J, Pagakis SN, Parmryd I (2002) Lipid rafts: cell surface platforms for T-cell signalling. Biol Res 35:127–131

    Article  CAS  PubMed  Google Scholar 

  • Mina JG, Pan SY, Wansadhipathi NK, Bruce CR, Shams-Eldin H, Schwarz RT, Steel PG, Denny PW (2009) The Trypanosoma brucei sphingolipid synthase, an essential enzyme and drug target. Mol Biochem Parasitol 168:16–23

    Article  CAS  PubMed  Google Scholar 

  • Nagiec MM, Nagiec EE, Baltisberger JA, Wells GB, Lester RL, Dickson RC (1997) Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J Biol Chem 272:9809–9817

    Article  CAS  PubMed  Google Scholar 

  • Nagiec MM, Young CL, Zaworski PG, Kobayashi SD (2003) Yeast sphingolipid bypass mutants as indicators of antifungal agents selectively targeting sphingolipid synthesis. Biochem Biophys Res Commun 307:369–374

    Article  CAS  PubMed  Google Scholar 

  • Neuwald AF (1997) An unexpected structural relationship between integral membrane phosphatases and soluble haloperoxidases. Protein Sci 6:1764–1767

    Article  CAS  PubMed  Google Scholar 

  • Pierce SK (2002) Lipid rafts and B-cell activation. Nature Rev Immunol 2:96–105

    Article  CAS  Google Scholar 

  • Ralton JE, McConville MJ (1998) Delineation of three pathways of glycosylphosphatidylinositol biosynthesis in Leishmania mexicana. Precursors from different pathways are assembled on distinct pools of phosphatidylinositol and undergo fatty acid remodeling. J Biol Chem 273:4245–4257

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Noda Y, Yoda K (2009) Kei1: a novel subunit of inositolphosphorylceramide synthase, essential for its enzyme activity and Golgi localization. Mol Biol Cell 20:4444–4457

    Article  CAS  PubMed  Google Scholar 

  • Smith WL, Merrill AH (2002) Sphingolipid metabolism and signaling. J Biol Chem 277:25841–25842

    Article  CAS  PubMed  Google Scholar 

  • Thompson W, MacDonald G (1975) Isolation and characterization of cytidine diphosphate diglyceride from beef liver. J Biol Chem 250:6779–6785

    CAS  PubMed  Google Scholar 

  • Thompson W, MacDonald G (1976) Cytidine diphosphate diglyceride of bovine brain. Positional distribution of fatty acids and analysis of major molecular species. Eur J Biochem 65:107–111

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Yang X, Tangchaiburana S, Ndeh R, Markham JE, Tsegaye Y, Dunn TM, Wang GL, Bellizzi M, Parsons JF, Morrissey D, Bravo JE, Lynch DV, Xiao S (2008) An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. Plant Cell 20:3163–3179

    Article  CAS  PubMed  Google Scholar 

  • Zhong W, Murphy DJ, Georgopapadakou NH (1999) Inhibition of yeast inositol phosphorylceramide synthase by aureobasidin A measured by a fluorometric assay. FEBS Lett 463:241–244

    Article  CAS  PubMed  Google Scholar 

Download references


This work was funded by Biotechnology and Biological Research Council (BB/D52396X/1) and Royal Society (2005/R1) grants to PWD and a British Council/Deutscher Akademischer Austausch Dienst Academic Research Collaboration Award to PWD and RTS. JGM and NKW are funded by the Overseas Research Student Award Scheme. JGM is also funded by the Wolfson Research Institute. This work was also supported in part by the Wolfson Research Institute Collaborative Small Grants Scheme and Deutsche Forschungsgemeinschaft, Bonn.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to T. Fawcett or P. W. Denny.

Additional information

The authors J. G. Mina and Y. Okada contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mina, J.G., Okada, Y., Wansadhipathi-Kannangara, N.K. et al. Functional analyses of differentially expressed isoforms of the Arabidopsis inositol phosphorylceramide synthase. Plant Mol Biol 73, 399–407 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: