Skip to main content
Log in

Stored and neosynthesized mRNA in Arabidopsis seeds: effects of cycloheximide and controlled deterioration treatment on the resumption of transcription during imbibition

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Dry seeds accumulate translatable mRNAs as well as functional proteins for transcription and translation. They are possibly involved in early physiological responses after imbibition, however, their functions remain poorly understood. The aim of this study is to investigate the function of seed stored transcriptional machinery in resumption of gene expression after the onset of imbibition in Arabidopsis thaliana. First, we examined the characters of stored mRNAs in A. thaliana dry seeds using microarray data from non-dormant Columbia (Col) and dormant Cape Verde Islands (Cvi) accessions. Transcriptomes of Col and Cvi dry seeds resembled one another, suggesting that patterns of stored mRNA do not reflect either the degree of dormancy or germination potential, but rather reflect the developmental context, such as seed maturation. Upon imbibition, changes in mRNA abundance of many genes were initiated between 1- and 2-h after the onset of imbibition. RT–PCR expression analysis of imbibition-responsive genes indicates that early induction was not altered by treatment of cycloheximide. This suggests that de novo protein synthesis is not required for gene expression during early imbibition stages. Moreover, controlled deterioration treatment (CDT), which causes artificial damages on dry seeds, disrupted gene expression specifically during the first 3 h after the start of imbibition, suggesting that seed stored transcription factors play a pivotal role in gene expression during early imbibition periods. Furthermore, the negligible effect of CDT on germination indicates that early imbibition response is dispensable and de novo synthesized proteins compensate for the function of stored proteins for germination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ABI:

Abscisic acid-insensitive

ABRE:

Abscisic acid-responsive element

BME3:

Blue micropylar end 3

CDT:

Controlled deterioration treatment

CHX:

Cycloheximide

Col:

Columbia

Cvi:

Cape Verde Islands

GSTU22:

Glutathione S-transferase tau 22

GO:

Gene ontology

HSP:

Heat shock protein

LEA:

Late embryogenesis abundant

RT–PCR:

Reverse transcription-PCR

TT:

Transparent testa

References

  • Alonso J, Stepanova A, Leisse T, Kim C, Chen H, Shinn P, Stevenson D, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers C, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter D, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby W, Berry C, Ecker J (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Andersson J, Walters R, Horton P, Jansson S (2001) Antisense inhibition of the photosynthetic antenna proteins CP29 and CP26: implications for the mechanism of protective energy dissipation. Plant Cell 13:1193–1204

    Article  CAS  PubMed  Google Scholar 

  • Baud S, Guyon V, Kronenberger J, Wuillème S, Miquel M, Caboche M, Lepiniec L, Rochat C (2003) Multifunctional acetyl-CoA carboxylase 1 is essential for very long chain fatty acid elongation and embryo development in Arabidopsis. Plant J 33:75–86

    Article  CAS  PubMed  Google Scholar 

  • Bensmihen S, Rippa S, Lambert G, Jublot D, Pautot V, Granier F, Giraudat J, Parcy F (2002) The homologous ABI5 and EEL transcription factors function antagonistically to fine-tune gene expression during late embryogenesis. Plant Cell 14:1391–1403

    Article  CAS  PubMed  Google Scholar 

  • Bewley JD, Black M (1994) Seeds: physiology of development and germination, 2nd edn. Plenum Press, New York

    Google Scholar 

  • Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pagès M, Masmoudi K (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26:2017–2026

    Article  CAS  PubMed  Google Scholar 

  • Cadman C, Toorop P, Hilhorst H, Finch-Savage W (2006) Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J 46:805–822

    Article  CAS  PubMed  Google Scholar 

  • Carles C, Bies-Etheve N, Aspart L, Léon-Kloosterziel K, Koornneef M, Echeverria M, Delseny M (2002) Regulation of Arabidopsis thaliana Em genes: role of ABI5. Plant J 30:373–383

    Article  CAS  PubMed  Google Scholar 

  • Chibani K, Ali-Rachedi S, Job C, Job D, Jullien M, Grappin P (2006) Proteomic analysis of seed dormancy in Arabidopsis. Plant Physiol 142:1493–1510

    Article  CAS  PubMed  Google Scholar 

  • Comai L, Harada J (1990) Transcriptional activities in dry seed nuclei indicate the timing of the transition from embryogenesis to germination. Proc Natl Acad Sci USA 87:2671–2674

    Article  CAS  PubMed  Google Scholar 

  • Comai L, Dietrich R, Maslyar D, Baden C, Harada J (1989) Coordinate expression of transcriptionally regulated isocitrate lyase and malate synthase genes in Brassica napus L. Plant Cell 1:293–300

    Article  CAS  PubMed  Google Scholar 

  • Dalal M, Tayal D, Chinnusamy V, Bansal K (2009) Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J Biotechnol 139:137–145

    Article  CAS  PubMed  Google Scholar 

  • Debeaujon I, Léon-Kloosterziel K, Koornneef M (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol 122:403–414

    Article  CAS  PubMed  Google Scholar 

  • Delouche JC, Baskin CC (1973) Accelerated aging techniques for predicting the relative storability of seed lots. Seed Sci Technol 1:427–452

    Google Scholar 

  • Dure L, Waters L (1965) Long-lived messenger RNA: evidence from cotton seed germination. Science 147:410–412

    Article  CAS  PubMed  Google Scholar 

  • Edwards R, Dixon D, Walbot V (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 5:193–198

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein R, Lynch T (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein R, Wang M, Lynch T, Rao S, Goodman H (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10:1043–1054

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran L, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara T, Nambara E, Yamagishi K, Goto D, Naito S (2002) Storage proteins. The arabidopsis book, pp 1–12

  • Gallardo K, Job C, Groot S, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of arabidopsis seed germination and priming. Plant Physiol 126:835–848

    Article  CAS  PubMed  Google Scholar 

  • Gallardo K, Job C, Groot S, Puype M, Demol H, Vandekerckhove J, Job D (2002) Proteomics of Arabidopsis seed germination. A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol 129:823–837

    Article  CAS  PubMed  Google Scholar 

  • Germain V, Rylott E, Larson T, Sherson S, Bechtold N, Carde J, Bryce J, Graham I, Smith S (2001) Requirement for 3-ketoacyl-CoA thiolase-2 in peroxisome development, fatty acid beta-oxidation and breakdown of triacylglycerol in lipid bodies of Arabidopsis seedlings. Plant J 28:1–12

    Article  CAS  PubMed  Google Scholar 

  • Giraudat J, Hauge B, Valon C, Smalle J, Parcy F, Goodman H (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4:1251–1261

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez A, Mendenhall J, Huo Y, Lloyd A (2009) TTG1 complex MYBs, MYB5 and TT2, control outer seed coat differentiation. Dev Biol 325:412–421

    Article  CAS  PubMed  Google Scholar 

  • Graham I (2008) Seed storage oil mobilization. Annu Rev Plant Biol 59:115–142

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, De Bellis L, Yamaguchi K, Kato A, Hayashi M, Nishimura M (1998) Molecular characterization of a glyoxysomal long chain acyl-CoA oxidase that is synthesized as a precursor of higher molecular mass in pumpkin. J Biol Chem 273:8301–8307

    Article  CAS  PubMed  Google Scholar 

  • Hirai YM, Fujiwara T, Awazuhara M, Kimura T, Noji M, Saito K (2003) Global expression profiling of sulfur-starved Arabidopsis by DNA microarray reveals the role of O-acetyl-L-serine as a general regulator of gene expression in response to sulfur nutrition. Plant J 33:651–663

    Article  CAS  PubMed  Google Scholar 

  • Hughes D, Galau G (1989) Temporally modular gene expression during cotyledon development. Genes Dev 3:358–369

    Article  CAS  PubMed  Google Scholar 

  • Hughes D, Galau G (1991) Developmental and environmental induction of Lea and LeaA mRNAs and the postabscission program during embryo culture. Plant Cell 3:605–618

    Article  CAS  PubMed  Google Scholar 

  • Hundertmark M, Hincha D (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118

    Article  PubMed  Google Scholar 

  • James DJ, Lim E, Keller J, Plooy I, Ralston E, Dooner H (1995) Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator. Plant Cell 7:309–319

    Article  CAS  PubMed  Google Scholar 

  • Jensen M, Hagedorn P, de Torres-Zabala M, Grant M, Rung J, Collinge D, Lyngkjaer M (2008) Transcriptional regulation by an NAC (NAM-ATAF1, 2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J 56:867–880

    Article  CAS  PubMed  Google Scholar 

  • Jolivet P, Roux E, D’Andrea S, Davanture M, Negroni L, Zivy M, Chardot T (2004) Protein composition of oil bodies in Arabidopsis thaliana ecotype WS. Plant Physiol Biochem 42:501–509

    Article  CAS  PubMed  Google Scholar 

  • Katavic V, Agrawal G, Hajduch M, Harris S, Thelen J (2006) Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars. Proteomics 6:4586–4598

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Ma J, Perret P, Li Z, Thomas T (2002) Arabidopsis ABI5 subfamily members have distinct DNA-binding and transcriptional activities. Plant Physiol 130:688–697

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Kim S, Park J, Park H, Lim M, Chua N, Park C (2006) A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell 18:3132–3144

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Yamamoto Y, Seki M, Sakurai T, Sato M, Abe T, Yoshida S, Manabe K, Shinozaki K, Matsui M (2003) Identification of Arabidopsis genes regulated by high light-stress using cDNA microarray. Photochem Photobiol 77:226–233

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Vierling E, Bäumlein H, von Koskull-Döring P (2007) A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell 19:182–195

    Article  CAS  PubMed  Google Scholar 

  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8’-hydroxylases: key enzymes in ABA catabolism. EMBO J 23:1647–1656

    Article  CAS  PubMed  Google Scholar 

  • Leubner-Metzger G (2005) Beta-1, 3-Glucanase gene expression in low-hydrated seeds as a mechanism for dormancy release during tobacco after-ripening. Plant J 41:133–145

    Article  CAS  PubMed  Google Scholar 

  • Leung J, Merlot S, Giraudat J (1997) The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9:759–771

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Koizuka N, Martin R, Nonogaki H (2005) The BME3 (Blue Micropylar End 3) GATA zinc finger transcription factor is a positive regulator of Arabidopsis seed germination. Plant J 44:960–971

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Shi L, Ye N, Liu R, Jia W, Zhang J (2009) Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis. New Phytol 183:1030–1042

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Molina L, Chua N (2000) A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana. Plant Cell Physiol 41:541–547

    CAS  PubMed  Google Scholar 

  • Lopez-Molina L, Mongrand S, Chua N (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci USA 98:4782–4787

    Article  CAS  PubMed  Google Scholar 

  • Lu P, Chen N, An R, Su Z, Qi B, Ren F, Chen J, Wang X (2007) A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol 63:289–305

    Article  CAS  PubMed  Google Scholar 

  • Marcus A, Feeley J (1964) Activation of protein synthesis in the imbibition phase of seed germination. Proc Natl Acad Sci USA 51:1075–1079

    Article  CAS  PubMed  Google Scholar 

  • Matakiadis T, Alboresi A, Jikumaru Y, Tatematsu K, Pichon O, Renou J, Kamiya Y, Nambara E, Truong H (2009) The Arabidopsis abscisic acid catabolic gene CYP707A2 plays a key role in nitrate control of seed dormancy. Plant Physiol 149:949–960

    Article  CAS  PubMed  Google Scholar 

  • Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J 41:697–709

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Fujita Y, Katsura K, Maruyama K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Mol Biol 60:51–68

    Article  CAS  PubMed  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  CAS  PubMed  Google Scholar 

  • Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N, Kamiya Y, Koshiba T, Nambara E (2006) CYP707A1 and CYP707A2, which encode ABA 8’-hydroxylases, are indispensable for a proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141:97–107

    Article  CAS  PubMed  Google Scholar 

  • Okamoto M, Tatematsu K, Matsui A, Morosawa T, Ishida J, Tanaka M, Endo TA, Mochizuki Y, Toyoda T, Kamiya Y, Shinozaki S, Nambara E, Seki M (2010) Genome-wide analysis of endogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays. Plant J (in press)

  • Oñate-Sánchez L, Vicente-Carbajosa J (2008) DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Res Notes 1:93

    Article  PubMed  Google Scholar 

  • Oracz K, El-Maarouf Bouteau H, Farrant J, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J 50:452–465

    Article  CAS  PubMed  Google Scholar 

  • Preston J, Tatematsu K, Kanno Y, Hobo T, Kimura M, Jikumaru Y, Yano R, Kamiya Y, Nambara E (2009) Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: A comparative study on dormant and non-dormant accessions. Plant Cell Physiol 50:1786–1800

    Article  CAS  PubMed  Google Scholar 

  • Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D (2004) The effect of alpha-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol 134:1598–1613

    Article  CAS  PubMed  Google Scholar 

  • Rajjou L, Lovigny Y, Job C, Belghazi M, Groot S, Job D (2007) Seed quality and germination. Seeds: biology, development and ecology. pp (324–332). In Adkins SW, Ashmore SE, Navie SC (eds) CABI book, Recent advance in seed biology, 8th international workshop on seeds

  • Rajjou L, Lovigny Y, Groot S, Belghazi M, Job C, Job D (2008) Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol 148:620–641

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  CAS  PubMed  Google Scholar 

  • Siloto R, Findlay K, Lopez-Villalobos A, Yeung E, Nykiforuk C, Moloney M (2006) The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell 18:1961–1974

    Article  CAS  PubMed  Google Scholar 

  • Tatematsu K, Nakabayashi K, Kamiya Y, Nambara E (2008) Transcription factor AtTCP14 regulates embryonic growth potential in Arabidopsis thaliana. Plant J 53:42–52

    Article  CAS  PubMed  Google Scholar 

  • Todd J, Post-Beittenmiller D, Jaworski J (1999) KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J 17:119–130

    Article  CAS  PubMed  Google Scholar 

  • Wagner U, Edwards R, Dixon D, Mauch F (2002) Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol Biol 49:515–532

    Article  CAS  PubMed  Google Scholar 

  • Waters E, Nguyen S, Eskandar R, Behan J, Sanders-Reed Z (2008) The recent evolution of a pseudogene: diversity and divergence of a mitochondria-localized small heat shock protein in Arabidopsis thaliana. Genome 51:177–186

    Article  CAS  PubMed  Google Scholar 

  • Wise M (2003) LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinformatics 4:52

    Article  PubMed  Google Scholar 

  • Yamagishi K, Tatematsu K, Yano R, Preston J, Kitamura S, Takahashi H, McCourt P, Kamiya Y, Nambara E (2009) CHOTTO1, a double AP2 domain protein of Arabidopsis thaliana, regulates germination and seedling growth under excess supply of glucose and nitrate. Plant Cell Physiol 50:330–340

    Article  CAS  PubMed  Google Scholar 

  • Yang P, Li X, Wang X, Chen H, Chen F, Shen S (2007) Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics 7:3358–3368

    Article  CAS  PubMed  Google Scholar 

  • Yephremov A, Wisman E, Huijser P, Huijser C, Wellesen K, Saedler H (1999) Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis. Plant Cell 11:2187–2201

    Article  CAS  PubMed  Google Scholar 

  • Yoshiyama K, Conklin P, Huefner N, Britt A (2009) Suppressor of gamma response 1 (SOG1) encodes a putative transcription factor governing multiple responses to DNA damage. Proc Natl Acad Sci U S A (in press)

  • Zhang Y, Cheng Y, Qu N, Zhao Q, Bi D, Li X (2006) Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs. Plant J 48:647–656

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors acknowledge Drs. George Stamatiou and Danielle Vidaurre (University of Toronto) for their critical reading of this manuscript and Professor Naoto Kawakami (Meiji University) for providing the tt8 mutants. This work is supported by NSERC Discovery grant (to E.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Nambara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLS 2634 kb)

(PPT 1379 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, M., Nambara, E. Stored and neosynthesized mRNA in Arabidopsis seeds: effects of cycloheximide and controlled deterioration treatment on the resumption of transcription during imbibition. Plant Mol Biol 73, 119–129 (2010). https://doi.org/10.1007/s11103-010-9603-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9603-x

Keywords

Navigation