Skip to main content

Advertisement

Log in

Predicting changes in dormancy level in natural seed soil banks

Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The possibility of accurately predicting timing and extent of seedling emergence from natural seed soil banks has long been an objective of both ecologist and agriculturalist. However, as dormancy is a common attribute of many wild seed populations, we should first be able to predict dormancy changes if we intend to predict seedling emergence in the field. In this paper, we discuss the most relevant environmental factors affecting seed dormancy of natural seed soil banks, and present a conceptual framework as an attempt to understand how these factors affect seed-bank dormancy level. Based on this conceptual framework we show approaches that can be used to establish quantitative functional relationship between environmental factors regulating dormancy and changes in the seed-bank dormancy status. Finally, we briefly explain how we can utilize population-based threshold models as a framework to characterize and quantify changes in seed sensitivity to environmental factors as a consequence of dormancy loss and/or induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Allen PS, White DB, Markhart AH III (1993) Germination of perennial ryegrass and annual bluegrass seeds subjected to hydration-dehydration cycles. Crop Sci 33:1020–1025

    Article  Google Scholar 

  • Allen PS, Benech-Arnold RL, Batlla D, Bradford KJ (2007) Modeling of seed dormancy. In: Bradford K, Nonogaki H (eds) Seed development, dormancy and germination, vol 27. Blackwell, Oxford, pp 72–112

    Chapter  Google Scholar 

  • Alvarado V, Bradford KJ (2005) Hydrothermal time analysis of seed dormancy in true (botanical) potato seeds. Seed Sci Res 15:77–88

    Article  Google Scholar 

  • Bair NB, Meyer SE, Allen PS (2006) A hydrothermal after-ripening time model for seed dormancy loss in Bromus tectorum L. Seed Sci Res 16:17–28

    Article  Google Scholar 

  • Baskin CC, Baskin JM (1988) Germination ecophysiology of herbaceous plant species in temperate region. Am J Bot 75(2):286–305

    Article  Google Scholar 

  • Baskin CC, Baskin JM (1998) Seed dormancy and germination: ecology, biogeography and evolution. Academic Press, San Diego

    Google Scholar 

  • Baskin CC, Baskin JM (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16

    Google Scholar 

  • Batlla D, Benech-Arnold RL (2003) A quantitative analysis of dormancy loss dynamics in Polygonum aviculare L. seeds. Development of a thermal time model based on changes in seed population thermal parameters. Seed Sci Res 13:55–68

    Article  Google Scholar 

  • Batlla D, Benech-Arnold RL (2004) Seed dormancy loss assessed by changes in Polygonum aviculare L. population hydrotime parameters. Development of a predictive model. Seed Sci Res 14:277–286

    Article  Google Scholar 

  • Batlla D, Benech-Arnold RL (2005) Changes in the light sensitivity of buried Polygonum aviculare seeds in relation to cold-induced dormancy loss: development of a predictive model. New Phytol 165:445–452

    Article  PubMed  Google Scholar 

  • Batlla D, Benech-Arnold RL (2006) The role of fluctuations in soil water content on the regulation of dormancy changes in buried seeds of Polygonum aviculare L. Seed Sci Res 16:47–59

    Article  CAS  Google Scholar 

  • Batlla D, Benech-Arnold RL (2007) Predicting changes in dormancy level in weed seed soil banks: implications for weed management. Crop Prot 26:189–197

    Article  Google Scholar 

  • Batlla D, Verges V, Benech-Arnold RL (2003) A quantitative analysis of seed responses to cycle-doses of fluctuating temperatures in relation to dormancy level. Development of a thermal-time model for Polygonum aviculare L. seeds. Seed Sci Res 13:197–207

    Article  Google Scholar 

  • Batlla D, Kruk BC, Benech-Arnold RL (2004) Modelling changes in dormancy in weed soil seed banks: implications for the prediction of weed emergence. In: Benech-Arnold RL, Sánchez RA (eds) Handbook of seed physiology: applications to agriculture. Haworth Press, New York, pp 245–264

    Google Scholar 

  • Batlla D, Nicoletta M, Benech-Arnold RL (2007) Polygonum aviculare L. seeds sensitivity to light as affected by soil moisture conditions. Ann Bot 99:915–924

    Article  PubMed  Google Scholar 

  • Batlla D, Grundy A, Dent K, Clay H, Finch-Savage W (2009) A quantitative analysis of temperature-dependent dormancy changes in Polygonum aviculare seeds. Weed Res 49:428–438

    Article  Google Scholar 

  • Bauer MC, Meyer SE, Allen PS (1998) A simulation model to predict seed dormancy loss in the field for Bromus tectorum L. J Exp Bot 49:1235–1244

    Article  CAS  Google Scholar 

  • Benech-Arnold RL, Ghersa CM, Sánchez RA, Insausti P (1990) Temperature effects on dormancy release and germination rate in Sorghum halepense (L.) Pers. seeds: a quantitative analysis. Weed Res 30:91–99

    Article  Google Scholar 

  • Benech-Arnold RL, Sánchez RA, Forcella F, Kruk BC, Ghersa CM (2000) Environmental control of dormancy in weed seed banks in soil. Field Crops Res 67:105–122

    Article  Google Scholar 

  • Bonhomme R (2000) Bases and limits to using ‘degree-day’ units. Eur J Agron 13:1–10

    Article  Google Scholar 

  • Bouwmeester HJ (1990) The effect of environmental conditions on the seasonal dormancy pattern and germination of weed seeds. PhD thesis, Wageningen Agricultural University, Wageningen, Netherlands

  • Bradford KJ (1995) Water relations in seed germination. In: Kigel J, Galili A (eds) Seed development and germination. Marcel Dekker Inc, New York, pp 351–396

    Google Scholar 

  • Bradford KJ (1996) Population-based models describing seed dormancy behaviour: implications for experimental design and interpretation. In: Lang A (ed) Plant dormancy: physiology, biochemistry and molecular biology. CAB International, Wallingford, pp 313–339

    Google Scholar 

  • Bradford KJ (1997) The hydrotime concept in seed germination and dormancy. In: Ellis RH, Black M, Murdoch AJ, Hong TD (eds) Basic and applied aspects of seed biology. Kluwer, Boston, pp 349–360

    Google Scholar 

  • Bradford KJ (2002) Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci 50:248–260

    Article  CAS  Google Scholar 

  • Bradford KJ (2005) Threshold models applied to seed germination ecology. New Phytol 165:338–341

    Article  PubMed  Google Scholar 

  • Cannell MGR, Smith RI (1983) Thermal time, chill days and prediction of budburst in Picea sitchensis. J Appl Ecol 20:951–963

    Article  Google Scholar 

  • Casal JJ, Sánchez RA (1998) Phytochromes and seed germination. Seed Sci Res 8:317–329

    Article  CAS  Google Scholar 

  • Chantre G, Batlla D, Sabbatini M, Orioli G (2009) Germination parameterization and development of an after-ripening thermal-time model for primary dormancy release of Lithospermum arvense seeds. Ann Bot 103:1291–1301

    Article  PubMed  Google Scholar 

  • Christensen M, Meyer SE, Allen PS (1996) A hydrothermal time model of seed after-ripening in Bromus tectorum L. Seed Sci Res 6:147–153

    Article  Google Scholar 

  • Cohn MA (1996) Operational and philosophical decisions in seed dormancy research. Seed Sci Res 6:147–154

    Google Scholar 

  • Covell S, Ellis RH, Roberts EH, Summerfield RJ (1986) The influence of temperature on seed germination rate in grain legumes.1. A comparison of chickpea, lentil, soybean and cowpea at constant temperatures. J Exp Bot 37:705–715

    Article  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:505–523

    Google Scholar 

  • Foley ME (1994) Temperature and water status of seed affect afterripening in wild oat (Avena fatua). Weed Sci 42:200–204

    Google Scholar 

  • Garcia-Huidobro J, Monteith JL, Squire GR (1982) Time, temperature and germination of pearl millet (Pennisetum typhoides S & H). I. Constant temperature. J Exp Bot 33:288–296

    Article  Google Scholar 

  • Ghersa CM, Martinez-Ghersa MA, Benech-Arnold RL (1997) The use of seed dormancy to improve grain production. J Prod Agric 10:111–117

    Google Scholar 

  • Hilhorst HWM (1990) Dose-response analysis of factors involved in germination and secondary dormancy of seeds of Sisymbrium officinale.2. Nitrate. Plant Phys 94:1096–1102

    Article  CAS  Google Scholar 

  • Hilhorst HWM (1995) A critical update on seed dormancy. I. Primary dormancy. Seed Sci Res 5:61–73

    Article  CAS  Google Scholar 

  • Hilhorst HWM (2007) Definition and hypotheses of seed dormancy. In: Bradford K, Nonogaki H (eds) Seed development, dormancy and germination, vol 27. Blackwell, Oxford, pp 50–71

    Chapter  Google Scholar 

  • Hilhorst HWM, Derkx MPM, Karssen CM (1996) An integrating model for seed dormancy cycling: characterization of reversible sensitivity. In: Lang A (ed) Plant dormancy: physiology, biochemistry and molecular biology. CAB International, Wallingford, pp 341–360

    Google Scholar 

  • Honek A, Kocourek F (1988) Thermal requirements for development of aphidophagous Coccinellidae (Coleoptera), Chrysopidae, Hemerobiidae (Neuroptera), and Syrphidae (Diptera): some general trends. Oecologia 76:455–460

    Google Scholar 

  • Huarte R, Benech-Arnold RL (2005) Incubation under fluctuating temperatures reduces mean base water potential for seed germination in several non-cultivated species. Seed Sci Res 15:89–97

    Article  Google Scholar 

  • Leopold AC, Glenister R, Cohn MA (1988) Relationship between water content and after-ripening in red rice. Physiol Plant 74:659–662

    Article  Google Scholar 

  • Meyer SE, Debaene-Gill SB, Allen PS (2000) Using hydrothermal time concepts to model seed germination response to temperature, dormancy loss, and priming effects in Elymus elymoides. Seed Sci Res 10:213–223

    Google Scholar 

  • Ni BR, Bradford KJ (1992) Quantitative models characterizing seed germination responses to abscisic acid and osmoticum. Plant Phys 9:1057–1068

    Article  Google Scholar 

  • Ni BR, Bradford KJ (1993) Germination and dormancy of abscisic acid- and gibberellin-deficient mutant tomato (Lycopersicon esculentum) seeds. Sensitivity of germination to abscisic acid, gibberellin and water potential. Plant Phys 101:607–617

    CAS  Google Scholar 

  • Nikolaeva MG (1967) [Physiology of deep dormancy in seeds] Leningrad, Russia: Izdatel’stvo ‘Nauka’ (in Russian) [Translated from Russian by Z. Shapiro (1969), National Science Foundation, Washington, USA: 219]

  • Pritchard HW, Tompsett PB, Manger KR (1996) Development of a thermal time model for the quantification of dormancy loss in Aesculus hippocastanum seeds. Seed Sci Res 6:127–135

    Google Scholar 

  • Scopel AL, Ballaré CL, Sánchez RA (1991) Induction of extreme light sensitivity in buried weed seeds and its role in the perception of soil cultivations. Plant Cell Environ 14:501–508

    Article  Google Scholar 

  • Steadman KJ, Crawford AD, Gallagher RS (2003) Dormancy release in Lolium rigidum seeds is a function of thermal after-ripening time and seed water content. Funct Plant Biol 30:345–352

    Article  Google Scholar 

  • Thompson K, Grime JP (1979) Seasonal variation in the soil seed banks of herbaceous species in ten contrasting habitats. J Ecol 67:893–921

    Article  Google Scholar 

  • Totterdell S, Roberts EH (1979) Effects of low temperatures on the loss of innate dormancy and the development of induced dormancy in seeds of Rumex obtusifolius L. and Rumex crispus L. Plant Cell Environ 2:131–137

    Article  Google Scholar 

  • Trudgill DL, Honek A, Li D, Van Straalen NM (2005) Thermal time—concepts and utility. Ann Appl Biol 146:1–14

    Article  Google Scholar 

  • Vegis A (1964) Dormancy in higher plants. Ann Rev Plant Phys 115:185–224

    Article  Google Scholar 

  • Wang WQ, Song SQ, Li SH, Gan YY, Wu JH, Cheng HY (2009) Quantitative description of the effect of stratification on dormancy release of grape seeds in response to various temperatures and water contents. J Exp Bot 12:397–406

    CAS  Google Scholar 

Download references

Acknowledgments

This paper is based on the talk presented by the authors in the 4th International Symposium on Plant Dormancy held in Fargo, USA, 8–11 June 2009. Diego Batlla would like to thank the organization committee for inviting him and funding his assistance to the symposium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Batlla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batlla, D., Benech-Arnold, R.L. Predicting changes in dormancy level in natural seed soil banks. Plant Mol Biol 73, 3–13 (2010). https://doi.org/10.1007/s11103-010-9601-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9601-z

Keywords

Navigation