Skip to main content
Log in

The DEAD-box protein PMH2 is required for efficient group II intron splicing in mitochondria of Arabidopsis thaliana

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

In Arabidopsis thaliana the putative mitochondrial RNA helicases PMH1 and PMH2 are members of the large DEAD-box protein family. Our previous characterization of these proteins revealed that PMH1 and/or PMH2 are part of high molecular weight complexes. Now T-DNA insertion lines were established and characterized for each of these genes. Immunodetection analysis of cell suspension cultures established from pmh1-1 and pmh2-1 mutants revealed that indeed both DEAD-box proteins are detectable in large protein complexes with PMH2 being much more abundant than PMH1. In plants the knockout of PMH2 leads to reduced group II intron splicing efficiency. In addition the steady-state levels of several mature mitochondrial mRNAs are decreased while transcription is not influenced. This molecular phenotype suggests that PMH2 acts at the posttranscriptional level with a potential function as RNA chaperone required for formation or maintenance of complex RNA secondary structures of introns rather than a direct role in splicing. In contrast, the investigation of a pmh1-1 knockout line did not reveal any influence of this protein on processing and abundance of mitochondrial transcripts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alonso JM, Stepanova AN, Leisse TJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Bentolila S, Alfonso AA, Hanson MR (2002) A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc Natl Acad Sci USA 99:10887–10892

    Article  CAS  PubMed  Google Scholar 

  • Binder S, Brennicke A (2003) Gene expression in plant mitochondria: transcriptional and posttranscriptional control. Phil Trans R Soc Lond B 358:181–199

    Article  CAS  Google Scholar 

  • Birtic S, Kranner I (2006) Isolation of high-quality RNA from polyphenol-, polysaccharide- and lipid-rich seeds. Phytochem Anal 17:144–148

    Article  CAS  PubMed  Google Scholar 

  • Bonen L (2008) Cis- and trans-splicing of group II introns in plant mitochondria. Mitochondrion 8:26–34

    Article  CAS  PubMed  Google Scholar 

  • Boudet N, Aubourg S, Toffano-Nioche C, Kreis M, Lecharny A (2001) Evolution of intron/exon structure of DEAD helicase family genes in Arabidopsis, Caenorhabditis, and Drosophila. Genome Res 11:2101–2114

    Article  CAS  PubMed  Google Scholar 

  • Brown GG, Formanova N, Jin H et al (2003) The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J 35:262–272

    Article  CAS  PubMed  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  PubMed  Google Scholar 

  • Desloire S, Gherbi H, Laloui W et al (2003) Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep 4:588–594

    Article  CAS  PubMed  Google Scholar 

  • Falcon de Longevialle A, Meyer EH, Andres C, Taylor NL, Lurin C, Millar AH, Small ID (2007) The pentatricopeptide repeat gene OTP43 is required for trans-splicing of the mitochondrial nad1 intron 1 in Arabidopsis thaliana. Plant Cell 19:3256–3265

    Article  CAS  Google Scholar 

  • Forner J, Weber B, Thuss S, Wildum S, Binder S (2007) Mapping of mitochondrial mRNA termini in Arabidopsis thaliana: t-elements contribute to 5′ and 3′ end formation. Nucleic Acids Res 35:3676–3692

    Article  CAS  PubMed  Google Scholar 

  • Gagliardi D, Binder S (2007) Expression of the plant mitochondrial genome. In: Logan D (ed) Plant mitochondria. Blackwell, Ames, pp 50–95

    Chapter  Google Scholar 

  • Hoffmann M, Kuhn J, Däschner K, Binder S (2001) The RNA world of plant mitochondria. Prog Nucleic Acid Res Mol Biol 70:119–154

    Article  CAS  PubMed  Google Scholar 

  • Huang HR, Rowe CE, Mohr S, Jiang Y, Lambowitz AM, Perlman PS (2005) The splicing of yeast mitochondrial group I and group II introns requires a DEAD-box protein with RNA chaperone function. Proc Natl Acad Sci USA 102:163–168

    Article  CAS  PubMed  Google Scholar 

  • Kazama T, Toriyama K (2003) A pentatricopeptide repeat-containing gene that promotes the processing of aberrant atp6 RNA of cytoplasmic male-sterile rice. FEBS Lett 544:99–102

    Article  CAS  PubMed  Google Scholar 

  • Klein M, Binder S, Brennicke A (1998) Purification of mitochondria from Arabidopsis. Methods Mol Biol 82:49–53

    CAS  PubMed  Google Scholar 

  • Koizuka N, Imai R, Fujimoto H, Hayakawa T, Kimura Y, Kohno-Murase J, Sakai T, Kawasaki S, Imamura J (2003) Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish. Plant J 34:407–415

    Article  CAS  PubMed  Google Scholar 

  • Kubo T, Newton KJ (2008) Angiosperm mitochondrial genomes and mutations. Mitochondrion 8:5–14

    Article  CAS  PubMed  Google Scholar 

  • Kuhn J, Binder S (2002) RT-PCR analysis of 5′ to 3′-end-ligated mRNAs identifies the extremities of cox2 transcripts in pea mitochondria. Nucleic Acids Res 30:439–446

    Article  CAS  PubMed  Google Scholar 

  • Linder P (2006) Dead-box proteins: a family affair–active and passive players in RNP-remodeling. Nucleic Acids Res 34:4168–4180

    Article  CAS  PubMed  Google Scholar 

  • Lorkovic ZJ, Herrmann RG, Oelmuller R (1997) PRH75, a new nucleus-localized member of the DEAD-box protein family from higher plants. Mol Cell Biol 17:2257–2265

    CAS  PubMed  Google Scholar 

  • Marchfelder A, Binder S (2004) Plastid and plant mitochondrial RNA processing and RNA stability. In: Daniell H, Chase C (eds) Molecular biology and biotechnolgy of plant organelles. Springer, Dordrecht, pp 261–294

    Chapter  Google Scholar 

  • Matthes A, Schmidt-Gattung S, Köhler D, Forner J, Wildum S, Raabe M, Urlaub H, Binder S (2007) Two DEAD-box proteins may be part of RNA-dependent high-molecular-mass protein complexes in Arabidopsis mitochondria. Plant Physiol 145:1637–1646

    Article  CAS  PubMed  Google Scholar 

  • Mingam A, Toffano-Nioche C, Brunaud V, Boudet N, Kreis M, Lecharny A (2004) DEAD-box RNA helicases in Arabidopsis thaliana: establishing a link between quantitative expression, gene structure and evolution of a family of genes. Plant Biotechnol J 2:401–415

    Article  CAS  PubMed  Google Scholar 

  • Mohr S, Stryker JM, Lambowitz AM (2002) A DEAD-box protein functions as an ATP-dependent RNA chaperone in group I intron splicing. Cell 109:769–779

    Article  CAS  PubMed  Google Scholar 

  • Perrin R, Lange H, Grienenberger JM, Gagliardi D (2004a) AtmtPNPase is required for multiple aspects of the 18S rRNA metabolism in Arabidopsis thaliana mitochondria. Nucleic Acids Res 32:5174–5182

    Article  CAS  PubMed  Google Scholar 

  • Perrin R, Meyer EH, Zaepfel M, Kim YJ, Mache R, Grienenberger JM, Gualberto JM, Gagliardi D (2004b) Two exoribonucleases act sequentially to process mature 3′-ends of atp9 mRNAs in Arabidopsis mitochondria. J Biol Chem 279:25440–25446

    Article  CAS  PubMed  Google Scholar 

  • Rocak S, Linder P (2004) DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol 5:232–241

    Article  CAS  PubMed  Google Scholar 

  • Russell R (2008) RNA misfolding and the action of chaperones. Front Biosci 13:1–20

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Cold Spring Habror Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sessions A, Burke E, Presting G et al (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994

    Article  CAS  PubMed  Google Scholar 

  • Stonebloom S, Burch-Smith T, Kim I, Meinke D, Mindrinos M, Zambryski P (2009) Loss of the plant DEAD-box protein ISE1 leads to defective mitochondria and increased cell-to-cell transport via plasmodesmata. In: Proceedings of the national academy of science USA. Epub 21 Sept 2009, doi:10.1073/pnas.0909229106

  • Takenaka M, Verbitskiy D, van der Merwe JA, Zehrmann A, Brennicke A (2008) The process of RNA editing in plant mitochondria. Mitochondrion 8:35–46

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zou Y, Li X et al (2006) Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 18:676–687

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

An antiserum raised against Porin from potato was kindly provided by Hans-Peter Braun (Hannover). We thank Conny Guha and Uli Tengler for excellent technical assistance. We are also very grateful to Solomon Stonebloom (Berkeley) for his very helpful comments on the manuscript. This work was supported by grants Bi 590/7-1 and 7-2 from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Binder.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köhler, D., Schmidt-Gattung, S. & Binder, S. The DEAD-box protein PMH2 is required for efficient group II intron splicing in mitochondria of Arabidopsis thaliana . Plant Mol Biol 72, 459–467 (2010). https://doi.org/10.1007/s11103-009-9584-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9584-9

Keywords

Navigation