Skip to main content
Log in

Changes in the expression of carbohydrate metabolism genes during three phases of bud dormancy in leafy spurge

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Underground adventitious buds of leafy spurge (Euphorbia esula) undergo three well-defined phases of dormancy, para-, endo-, and ecodormancy. In this study, relationships among genes involved in carbohydrate metabolism and bud dormancy were examined after paradormancy release (growth induction) by decapitation and in response to seasonal signals. Real-time PCR was used to determine the expression levels of carbohydrate metabolism genes at different phases of bud dormancy. Among differentially-regulated genes, expression of a specific Euphorbia esula β-amylase gene (Ee-BAM1) increased 100-fold after growth induction and 16,000-fold from July (paradormancy) to December (ecodormancy). Sequence data analysis indicated that two genes, Ee-BAM1 and Ee-BAM2, could encode this β-amylase. However, real-time PCR using gene-specific primer pairs only amplified Ee-BAM1, indicating that Ee-BAM2 is either specific to other organs or not abundant. The deduced amino acid sequences of these two genes are very similar at the N-terminal but differ at the C-terminal. Both contain a nearly identical, predicted 48-amino acid plastid transit peptide. Immunoblot analyses identified a 29 kD (mature Ee-BAM1 after cleavage of the transit peptide) and a 35 kD (unprocessed EeBAM1) protein. Both 35 and 29 kD proteins were constitutively expressed in growth-induced and seasonal samples. Immunolocalization indicated that Ee-BAM1 is in the cytosol of cells at the shoot tip of the bud. Ee-BAM1 also surrounds the amyloplasts in mature cells toward the base of the bud. These observations suggests that Ee-BAM1 may have dual functions; serving as reserve protein in the cytosol and as a degrading enzyme at the surface of amyloplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson JV, Gesch RW, Jia Y, Chao WS, Horvath DP (2005) Seasonal shifts in dormancy status, carbohydrate metabolism, and related gene expression in crown buds of leafy spurge. Plant Cell Environ 28:1567–1578

    Article  CAS  Google Scholar 

  • Anderson JV, Horvath DP, Chao WS, Foley ME, Hernandez AG, Thimmapuram J, Liu L, Gong GL, Band M, Kim R, Mikel MA (2007) Characterization of an EST database for the perennial weed leafy spurge: an important resource for weed biology research. Weed Sci 55:193–203

    Article  CAS  Google Scholar 

  • Asatsuma S, Sawada C, Itoh K, Okito M, Kitajima A, Mitsui T (2005) Involvement of alpha-amylase I-1 in starch degradation in rice chloroplasts. Plant Cell Physiol 46:858–869

    Article  CAS  PubMed  Google Scholar 

  • Baskin TI, Busby CH, Fowke LC, Sammut M, Gubler F (1992) Improvements in immunostaining samples embedded in methacrylate: localization of microtubules and other antigens throughout developing organs in plants of diverse taxa. Planta 187:405–413

    Article  Google Scholar 

  • Chao WS (2008) Real-time PCR as a tool to study weed biology. Weed Sci 56:290–296

    Article  CAS  Google Scholar 

  • Chao WS, Serpe MD, Anderson JV, Gesch RW, Horvath DP (2006) Sugars, hormones, and environment affect the dormancy status in underground adventitious buds of leafy spurge (Euphorbia esula L.). Weed Sci 54:59–68

    Article  CAS  Google Scholar 

  • Chao WS, Serpe M, Jia Y, Shelver W, Anderson J, Umede M (2007) Potential roles for autophosphorylation, kinase activity, and abundance of a CDK-activating kinase (Ee;CDKF;1) during growth in leafy spurge. Plant Mol Biol 63:365–397

    Article  CAS  PubMed  Google Scholar 

  • Chia T, Thorneycroft D, Chapple A, Messerli G, Chen J, Zeeman SC, Smith SM, Smith AM (2004) A cytosolic glucosyltransferase is required for the conversion of starch to sucrose in Arabidopsis leaves at night. Plant J 37:853–863

    Article  CAS  PubMed  Google Scholar 

  • Dekkers BJ, Schuurmans JA, Smeekens SC (2004) Glucose delays seed germination in Arabidopsis thaliana. Planta 218:579–588

    Article  CAS  PubMed  Google Scholar 

  • Delatte T, Umhang M, Trevisan M, Eicke S, Thorneycroft D, Smith SM, Zeeman SC (2006) Evidence for distinct mechanisms of starch granule breakdown in plants. J Biol Chem 281:12050–12059

    Article  CAS  PubMed  Google Scholar 

  • Edner C, Li J, Albrecht T, Mahlow S, Hejazi M, Hussain H, Kaplan F, Guy C, Smith SM, Steup M, Ritte G (2007) Glucan, water dikinase activity stimulates breakdown of starch granules by plastidial β-amylases. Plant Physiol 145:17–28

    Article  CAS  PubMed  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  CAS  PubMed  Google Scholar 

  • Fincher GB, Stone BA (1993) Physiology and biochemistry of germination in barley. In: MacGregor AW, Bhatty RS (eds) Barley: chemistry and technology. American Association of Cereal Chemists, St. Paul, pp 247–295

    Google Scholar 

  • Foley ME, Anderson JV, Horvath DP (2009) The effects of temperature, photoperiod, and vernalization on regrowth and flowering competence in Euphorbia esula (Euphorbiaceae) crown buds. Botany 87:986–992

    Article  CAS  Google Scholar 

  • Horvath DP (1998) The role of specific plant organs and polar auxin transport in correlative inhibition of leafy spurge (Euphorbia esula) root buds. Can J Bot 76:1227–1231

    Article  CAS  Google Scholar 

  • Horvath DP (1999) Role of mature leaves in inhibition of root bud growth in Euphorbia esula L. Weed Sci 47:544–550

    CAS  Google Scholar 

  • Hummel M, Rabmani F, Smeekens S, Hanson J (2009) Sucrose-mediated translational control. Ann Bot 104:1–7

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, Anderson JV, Horvath DP, Gu YQ, Lym RG, Chao WS (2006) Subtractive cDNA libraries identify differentially-expressed genes in dormant and growing buds of leafy spurge (Euphorbia esula). Plant Mol Biol 61:329–344

    Article  CAS  PubMed  Google Scholar 

  • Kaplan F, Guy CL (2005) RNA interference of Arabidopsis β-amylase 8 prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress. Plant J 44:730–743

    Article  CAS  PubMed  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lang GA, Early JD, Martin GC, Darnell RL (1987) Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. Hort Sci 22:371–377

    Google Scholar 

  • Lloyd JR, Kossmann J, Ritte G (2005) Leaf starch degradation comes out of the shadows. Trends Plant Sci 10:130–137

    CAS  PubMed  Google Scholar 

  • Lu Y, Sharkey T (2004) The role of amylomaltase in maltose metabolism in the cytosol of photosynthetic cells. Planta 218:466–473

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Gehan JP, Sharkey TD (2005) Daylength and circadian effects on starch degradation and maltose metabolism. Plant Physiol 138:2280–2291

    Article  CAS  PubMed  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336

    Article  CAS  PubMed  Google Scholar 

  • Niittylä T, Messerli G, Trevisan M, Chen J, Smith AM, Zeeman SC (2004) A previously unknown maltose transporter essential for starch degradation in leaves. Science 303:87–89

    Article  PubMed  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Scheidig A, Fröhlich A, Schulze S, Lloyd JR, Kossmann J (2002) Down regulation of a chloroplast-targeted β-amylase leads to a starch-excess phenotype in leaves. Plant J 30:581–591

    Article  CAS  PubMed  Google Scholar 

  • Schmitt MR, Marinac L (2008) Beta-amylase degradation by serine endoproteinases from green barley malt. J Cereal Sci 47:480–488

    Article  CAS  Google Scholar 

  • Shewry PR (2003) Tuber storage proteins. Ann Bot 91:755–769

    Article  CAS  PubMed  Google Scholar 

  • Smith SM, Fulton DC, Chia T, Thorneycroft D, Chapple A, Dunstan H, Hylton C, Zeeman SC, Smith AM (2004) Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and post-transcriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiol 136:2687–2699

    Article  CAS  PubMed  Google Scholar 

  • Smith AM, Zeeman SC, Smith SM (2005) Starch degradation. Annu Rev Plant Biol 56:73–97

    Article  CAS  PubMed  Google Scholar 

  • Takaha T, Smith SM (1999) The functions of 4-α-glucanotransferases and their use for the production of cyclic glucans. Biotechnol Genet Eng Rev 16:257–280

    CAS  PubMed  Google Scholar 

  • Vanita J, Kaiser W, Huber SM (2008) Cytokinin inhibits the proteosome mediated degradation of carbonylated proteins in leaves. Plant Cell Physiol 49:843–852

    Article  Google Scholar 

  • Wang CS, Walling LL, Eckard KJ, Lord EM (1992) Patterns of protein accumulation in developing anthers of Lilium longiflorum correlate with histological events. Am J Bot 79:118–127

    Article  CAS  Google Scholar 

  • Weber A, Servaites JC, Geiger DR, Kofler H, Hille D, Gröner F, Hebbeker U, Flügge UI (2000) Identification, purification, and molecular cloning of a putative plastidic glucose translocator. Plant Cell 12:787–802

    Article  CAS  PubMed  Google Scholar 

  • Wobus U, Weber H (1999) Sugars as signal molecules in plant seed development. Biol Chem 390:937–944

    Article  Google Scholar 

  • Yu TS, Zeeman SC, Thorneycroft D, Fulton DC, Dunstan H, Lue WL, Hegemann B, Tung SY, Umemoto T, Chapple A et al (2005) Alpha-amylase is not required for breakdown of transitory starch in Arabidopsis leaves. J Biol Chem 280:9773–9779

    Article  CAS  PubMed  Google Scholar 

  • Zeeman SC, Delatte T, Messerli G, Umhang M, Stettler M, Mettler T, Streb S, Reinhold H, Kötting O (2007a) Starch breakdown: recent discoveries suggest distinct pathways and novel mechanisms. Funct Plant Biol 34:465–473

    Article  CAS  Google Scholar 

  • Zeeman SC, Smith SM, Smith AM (2007b) The diurnal metabolism of leaf starch. Biochem J 401:13–28

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Wayne Sargent, USDA-ARS, Fargo, ND, for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wun S. Chao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLS 23 kb)

(XLS 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, W.S., Serpe, M.D. Changes in the expression of carbohydrate metabolism genes during three phases of bud dormancy in leafy spurge. Plant Mol Biol 73, 227–239 (2010). https://doi.org/10.1007/s11103-009-9568-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9568-9

Keywords

Navigation