Skip to main content
Log in

Parallel pigment and transcriptomic analysis of four barley Albina and Xantha mutants reveals the complex network of the chloroplast-dependent metabolism

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We investigated the pigment composition and the transcriptome of albina (alb-e 16 and alb-f 17) and xantha (xan-s 46 and xan-b 12) barley mutants to provide an overall transcriptional picture of genes whose expression is interconnected with chloroplast activities and to search for candidate genes associated with the mutations. Beside those encoding plastid-localized proteins, more than 3,000 genes involved in non-chloroplast localized metabolism were up-/down-regulated in the mutants revealing the network of chloroplast-dependent metabolic pathways. The alb-e 16 mutant was characterized by overaccumulation of protoporphyrin IX upon ALA (5-amino levulinic acid) feeding and down-regulation of the gene encoding one subunit of Mg-chelatase, suggesting a block of the chlorophyll biosynthetic pathway before Mg-protoporphyrin IX biosynthesis, while alb-f 17 overaccumulated Mg-protoporphyrin IX and repressed PorA expression, without alterations in Mg-chelatase mRNA level. The alb-f 17mutant also showed overexpression of several genes involved in phytochrome and in phytochrome-dependent pathways. The results indicate that the down-regulation of Lhcb genes in alb-e 16 cannot be mediated by the accumulation of Mg-protoporphyrin IX. After ALA treatment, xan-s 46 showed overaccumulation of Mg-protoporphyrin IX, while the relative porphyrin composition of xan-b 12 was similar to wild type. The transcripts encoding the components of several mitochondrial metabolic pathways were up-regulated in albina/xantha leaves to compensate for the absence of active chloroplasts. The mRNAs encoding gun3, gun4, and gun5 barley homologous genes showed significant expression variations and were used to search for co-expressed genes across all samples. These analyses provide additional evidences on a chloroplast-dependent covariation of large sets of nuclear genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ALA:

5-Amino levulinic acid

CAO:

Chlorophyll a oxigenase

Chlide:

Chlorophyllide

DVPchlide:

Divinylprotochlorophyllide

GluTR:

Glutamyl-tRNA-reductase

GO:

Gene ontology

Gun :

Genome uncoupled

Mg-proto IX:

Mg-protoporphyrin IX

Mg-proto MME:

Mg-protoporphyrin-monomethylester

MMC:

Mg-proto IX MME cyclase

MCCase:

Methylcrotonyl-CoA carboxylase

MVPchlide:

Monovinylprotochlorophyllide

Pchlide:

Protochlorophyllide

POR:

Protochlorophyllide-oxidoreductase

Proto IX:

Protoporphyrin IX

PS:

Photosystem

qRT-PCR:

Quantitative reverse transcription-PCR

VDE:

Violaxanthin de-epoxidase

WT:

Wild type

ZEP:

Zeaxanthin epoxidase

References

  • Anderson MD, Che P, Song J, Nikolau BJ, Wurtele ES (1998) 3-Methylcrotonyl-coenzyme A carboxylase is a component of the mitochondrial leucine catabolic pathway in plants. Plant Physiol 118:1127–1138. doi:10.1104/pp.118.4.1127

    Article  PubMed  CAS  Google Scholar 

  • Aubert S, Alban C, Bligny R, Douce R (1996) Induction of β-methylcrotonyl-coenzyme A carboxylase in higher plant cells during carbohydrate starvation: evedence for a role of MCCase in leucine catabolism. FEBS Lett 373:175–180. doi:10.1016/0014-5793(96)00244-X

    Article  Google Scholar 

  • Baroli I, Do AD, Yamane T, Nyiogi KK (2003) Zeaxanthin accumulation in the absence of a functional xanthophyll cycle protects Chlamydomonas reinhardtii from photooxidative stress. Plant Cell 15:992–1008. doi:10.1105/tpc.010405

    Article  PubMed  CAS  Google Scholar 

  • Beck CF (2005) Signaling pathways from the chloroplast to the nucleus. Planta 222:743–756. doi:10.1007/s00425-005-0021-2

    Article  PubMed  CAS  Google Scholar 

  • Bougri O, Grimm B (1996) Members of a low-copy number gene family encoding glutamyl-tRNA reductase are differentially expressed in barley. Plant J 9:867–878. doi:10.1046/j.1365-313X.1996.9060867.x

    Article  PubMed  CAS  Google Scholar 

  • Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandmann G, Mache R, Coupland G, Kuntz M (1999) Mutations in the arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell 11:57–68

    Article  PubMed  CAS  Google Scholar 

  • Che P, Wurtele ES, Nikolau BJ (2002) Metabolic and environmental regulation of 3-methylcrotonyl-coenzyme A carboxylase expression in Arabidopsis. Plant Physiol 129:625–637. doi:10.1104/pp.001842

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Choi YD, Voytas DF, Rodermel S (2000) Mutations in the Arabidopsis VAR2 locus cause leaf variegation due to the loss of a chloroplast FtsH protease. Plant J 22:303–313. doi:10.1046/j.1365-313x.2000.00738.x

    Article  PubMed  Google Scholar 

  • Close TJ, Wanamaker SL, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP (2004) A new resource for cereal genomics: 22 K barley GeneChip comes of age. Plant Physiol 134:960–968. doi:10.1104/pp.103.034462

    Article  PubMed  CAS  Google Scholar 

  • Croce R, Canino G, Ros F, Bassi R (2002) Chromophore organization in the higher-plant photosystem II antenna protein CP26. Biochemistry 41:7334–7343. doi:10.1021/bi0257437

    Article  PubMed  CAS  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe 1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346–349. doi:10.1038/35053080

    Article  PubMed  CAS  Google Scholar 

  • Dall’Osto L, Caffarri S, Bassi R (2005) A mechanism of nonphotochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26. Plant Cell 17:1217–1232. doi:10.1105/tpc.104.030601

    Article  PubMed  Google Scholar 

  • Davis SJ, Kurepa J, Vierstra RD (1999) The Arabidopsis thaliana HY1 locus, required for phytochrome-chromophore biosynthesis, encodes a protein related to heme oxygenases. Proc Natl Acad Sci USA 96:6541–6546. doi:10.1073/pnas.96.11.6541

    Article  PubMed  CAS  Google Scholar 

  • Davison PA, Schubert HL, Reid JD, Iorg CD, Heroux A, Hill CP, Hunter CN (2005) Structural and biochemical characterization of Gun4 suggests a mechanism for its role in chlorophyll biosynthesis. Biochemistry 44:7603–7612. doi:10.1021/bi050240x

    Article  PubMed  CAS  Google Scholar 

  • Dolezal P, Likic V, Tachezy J, Lithgow T (2006) Evolution of the molecular machines for protein import into mitochondria. Science 313:314–318. doi:10.1126/science.1127895

    Article  PubMed  CAS  Google Scholar 

  • Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304:253–257. doi:10.1126/science.1094884

    Article  PubMed  CAS  Google Scholar 

  • Dybbs M, Ngai J, Kaplan JM (2005) Using microarrays to facilitate positional cloning: identification of tomosyn as an inhibitor of neurosecretion. PLOS Genomics 1:e2. doi:10.1371/journal.pgen.0010002

    Article  Google Scholar 

  • Felder S, Meierhoff K, Sane AP, Meurer J, Driemel C, Plűcken H, Klaff P, Stein B, Bechtold N, Westhoff P (2001) The nucleus-encoded HCF107 gene of Arabidopsis provides a link between intercistronic RNA processing and the accumulation of translation-competent psbH transcripts in chloroplast. Plant Cell 13:2127–2141

    Article  PubMed  CAS  Google Scholar 

  • Fisk DG, Walker MB, Barkan A (1999) Molecular cloning of the maize gene crp1 reveals similarity between regulators of mitochondrial and chloroplast gene expression. EMBO J 18:2621–2630. doi:10.1093/emboj/18.9.2621

    Article  PubMed  CAS  Google Scholar 

  • Frigerio S, Campoli C, Zorzan S, Fantoni LI, Crosatti C, Drepper F, Haehnel W, Cattivelli L, Morosinotto T, Bassi R (2007) Photosynthetic antenna size in higher plants is controlled by plastoquinone redox state at post-transcriptional rather than transcriptional level. J Biol Chem 282:29457–29469. doi:10.1074/jbc.M705132200

    Article  PubMed  CAS  Google Scholar 

  • Frohnmeyer H, Bowler C, Zhu J-K, Yamagata H, Schafer E, Chua N-M (1998) Different roles for calcium and calmodulin in phytochrome- and UV-regulated expression of chalcone synthase. Plant J 13:763–772. doi:10.1046/j.1365-313X.1998.00074.x

    Article  CAS  Google Scholar 

  • Gadjieva R, Axelsson E, Olsson U, Christersson JV, Hansson M (2004) Nonsense-mediated mRNA decay in barley mutants allows the cloning of mutated genes by a microarray approach. Plant Physiol Biochem 42:681–685. doi:10.1016/j.plaphy.2004.06.005

    Article  PubMed  CAS  Google Scholar 

  • Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inzé D, Mittler R, Van Breusegem F (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol 141:436–445. doi:10.1104/pp.106.078717

    Article  PubMed  CAS  Google Scholar 

  • Gilmore AM, Yamamoto HY (1991a) Resolution of lutein and zeaxanthin using a non-endcapped, lightly carbon-loaded C-18 high-performance liquid-chromatographic column. J Chromatogr A 543:137–145. doi:10.1016/S0021-9673(01)95762-0

    Article  CAS  Google Scholar 

  • Gilmore AM, Yamamoto HY (1991b) Zeaxanthin formation and energy-dependent fluorescence quenching in pea chloroplasts under artificially mediated linear and cyclic electron transport. Plant Physiol 96:635–643. doi:10.1104/pp.96.2.635

    Article  PubMed  CAS  Google Scholar 

  • Goslings D, Meskauskiene R, Kim C, Lee KP, Nater M, Apel K (2004) Concurrent interactions of heme and FLU with glu tRNA reductase (HEMA1), the target of metabolic feedback inhibition of tetrapyrrole biosynthesis, in dark- and light-grown Arabidopsis plants. Plant J 40:957–967. doi:10.1111/j.1365-313X.2004.02262.x

    Article  PubMed  CAS  Google Scholar 

  • Gough S (1972) Defective synthesis of porphyrins in barley plastids caused by mutation in nuclear genes. Biochim Biophys Acta 286:36–54

    PubMed  CAS  Google Scholar 

  • Havaux M, Niyogi KK (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci USA 96:8762–8767. doi:10.1073/pnas.96.15.8762

    Article  PubMed  CAS  Google Scholar 

  • Hedtke B, Wagner I, Bőrner T, Hess WR (1999) Inter-organellar crosstalk in higher plants: impaired chloroplast development affects mitochondrial gene and transcript levels. Plant J 19:635–643. doi:10.1046/j.1365-313x.1999.00554.x

    Article  PubMed  CAS  Google Scholar 

  • Henningsen KW, Boyton JE, von Wettstein D (1993) Mutants at xantha and albino loci in relation to chloroplast biogenesis in barley (Hordeum vulgare L.). Biologiske Skrifter 42 of the Royal Danish Academy of Sciences and Letters, Copenhagen, pp 1–348

    Google Scholar 

  • Hentze MW, Kulozik AE (1999) A perfect message: RNA surveillance and nonsense mediated decay. Cell 96:307–310. doi:10.1016/S0092-8674(00)80542-5

    Article  PubMed  CAS  Google Scholar 

  • Hoecker U, Xu Y, Quail PH (1998) SPA1: a new genetic locus involved in phytochrome A-specific transduction. Plant Cell 10:19–33

    Article  PubMed  CAS  Google Scholar 

  • Holtorf H, Reinbothe S, Reinbothe C, Bereza B, Apel K (1995) Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). Proc Natl Acad Sci USA 92:3254–3258. doi:10.1073/pnas.92.8.3254

    Article  PubMed  CAS  Google Scholar 

  • Jensen PE, Willows RD, Petersen BL, Vothknecht UC, Stummann BM, Kannangara CG, von Wettstein D, Henningsen KW (1996) Structural genes for Mg-chelatase subunits in barley: xantha-f, -g, and -h. Mol Gen Genet 250:383–394

    PubMed  CAS  Google Scholar 

  • Klement H, Helfrich M, Oster U, Schoch S, Rudiger W (1999) Pigment-free NADPH: protochlorophyllide oxidoreductase from Avena sativa L.—purification and substrate specificity. Eur J Biochem 265:862–874. doi:10.1046/j.1432-1327.1999.00627.x

    Article  PubMed  CAS  Google Scholar 

  • Klimyuk VI, Persello-Cartieaux F, Havaux M, Contrard-David P, Schuenemann D, Meiherhoff K, Gouet P, Jones JDG, Hoffman NE, Nussaume L (1999) A chromodomain protein encoded by the Arabidopsis CAO gene is a plant-specific component of the chloroplast signal recognition particle pathway that is involved in LHCP targeting. Plant Cell 11:87–99

    Article  PubMed  CAS  Google Scholar 

  • Kohchi T, Mukougawa K, Frankenberg N, Masuda M, Yokota A, Lagarias C (2001) The Arabidopsis HY gene encodes phytochromobilin synthase, a ferredoxin-dependetn biliverdin reductase. Plant Cell 13:425–436

    Article  PubMed  CAS  Google Scholar 

  • Kopetz KJ, Kolossov VL, Rebeiz CA (2004) Chloroplast biogenesis 89: development of analytical tools for probing the biosynthetic topography of photosynthetic membranes by determination of resonance excitation energy transfer distances separating metabolic tetrapyrrole donors from chlorophyll a acceptors. Anal Biochem 329:207–219. doi:10.1016/j.ab.2004.03.008

    Article  PubMed  CAS  Google Scholar 

  • Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim J, Mittler R, Chory J (2007) Multiple signals from damaged chloroplasts converge to regulate nuclear gene expression. Science 316:715–719. doi:10.1126/science.1140516

    Article  PubMed  CAS  Google Scholar 

  • Kroll D, Meierhoff K, Bechtold N, Kinoshita M, Westphal S, Vothknecht UC, Soll J, Westhoff P (2001) VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation. Proc Natl Acad Sci USA 98:4238–4242. doi:10.1073/pnas.061500998

    Article  PubMed  CAS  Google Scholar 

  • Kumar AM, Söll D (2000) Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis. Plant Physiol 122:49–56. doi:10.1104/pp.122.1.49

    Article  PubMed  CAS  Google Scholar 

  • Larkin RM, Alonso JM, Ecker JR, Chory J (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299:902–906. doi:10.1126/science.1079978

    Article  PubMed  CAS  Google Scholar 

  • Lee KP, Kim C, Won Lee D, Apel K (2003) TIGRINA d, required for regulating the biosynthesis of tetrapyrroles in barley, is an ortholog of the FLU gene of Arabidopsis thaliana. FEBS Lett 553:119–124. doi:10.1016/S0014-5793(03)00983-9

    Article  PubMed  CAS  Google Scholar 

  • Leister D (2003) Chloroplast research in the genomic age. Trends Genet 19:47–56. doi:10.1016/S0168-9525(02)00003-3

    Article  PubMed  CAS  Google Scholar 

  • Leister D (2005) Genomics-based dissection of the cross-talk of chloroplasts with the nucleus and mitochondria in Arabidopsis. Gene 354:110–116. doi:10.1016/j.gene.2005.03.039

    Article  PubMed  CAS  Google Scholar 

  • Li XP, Biőrkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395. doi:10.1038/35000131

    Article  PubMed  CAS  Google Scholar 

  • Matsuo M, Obokata J (2006) Remote control of photosynthetic genes by the mitochondrial respiratory chain. Plant J 47:873–882. doi:10.1111/j.1365-313X.2006.02839.x

    Article  PubMed  CAS  Google Scholar 

  • McCormac AC, Terry MJ (2002) Light-signalling pathways leading to the co-ordinated expression of HEMA1 and Lhcb during chloroplast development in Arabidopsis thaliana. Plant J 32:549–559. doi:10.1046/j.1365-313X.2002.01443.x

    Article  PubMed  CAS  Google Scholar 

  • McCormac AC, Fischer A, Kumar AM, Söll D, Terry MJ (2001) Regulation of HEMA1 expression by phytochrome and a plastid signal during de-etiolation in Arabidopsis thaliana. Plant J 25:549–561. doi:10.1046/j.1365-313x.2001.00986.x

    Article  PubMed  CAS  Google Scholar 

  • Meskauskiene R, Nater M, Goslings D, Kessler F, op den Camp R, Apel K (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:12826–12831. doi:10.1073/pnas.221252798

    Article  PubMed  CAS  Google Scholar 

  • Meurer J, Plűcken H, Kowallik KV, Westhoff P (1998) A nuclear-encoded protein of prokariotic origin is essential for the stability of photosystem II in Arabidopsis thaliana. EMBO J 17:5286–5297. doi:10.1093/emboj/17.18.5286

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci USA 98:2053–2058. doi:10.1073/pnas.98.4.2053

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki N, Tanaka R, Tanaka A, Masuda T, Nagatani A (2008) The steady-state level of Mg-protoporphyrin IX is not a determinant of plastid-to-nucleus signaling in Arabidopsis. Proc Natl Acad Sci USA 105:15184–15189. doi:10.1073/pnas.0803245105

    Article  PubMed  CAS  Google Scholar 

  • Møller SG, Kunkel T, Chua NH (2001) A plastidic ABC protein involved in intercompartmental communicatin of light signalling. Genes Dev 15:90–103. doi:10.1101/gad.850101

    Article  PubMed  Google Scholar 

  • Moulin M, McCormac A, Terry MJ, Smith AG (2008) Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation. Proc Natl Acad Sci USA 105:15178–15183. doi:10.1073/pnas.0803054105

    Article  PubMed  CAS  Google Scholar 

  • Munekage Y, Takeda S, Endo T, Jahns P, Hashimoto T, Shikanai T (2001) Cytochrome b6f mutation specifically affects thermal dissipation of absorbed light energy in Arabidopsis. Plant J 28:351–359. doi:10.1046/j.1365-313X.2001.01178.x

    Article  PubMed  CAS  Google Scholar 

  • Muramoto T, Kohchi T, Yokota A, Hwang I, Goodman HM (1999) The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell 11:335–347

    Article  PubMed  CAS  Google Scholar 

  • Nielsen OF (1975) Macromolecular physiology of plastids. XIII. The effect of photoinactive protochlorophyllide on the function of protochlorophyllide holochrome. Biochem Physiol Pflanz 167:195–206

    CAS  Google Scholar 

  • Niyogi KK, Grossman AR, Björkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134

    Article  PubMed  CAS  Google Scholar 

  • North HM, De Almeida A, Boutin J-P, Frey A, To A, Botran L, Sotta B, Marion-Poll A (2007) The Arabidopsis ABA-deficient mutant aba4 demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomers. Plant J 50:810–824. doi:10.1111/j.1365-313X.2007.03094.x

    Article  PubMed  CAS  Google Scholar 

  • Nott A, Jung H-S, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759. doi:10.1146/annurev.arplant.57.032905.105310

    Article  PubMed  CAS  Google Scholar 

  • Oster U, Tanaka R, Tanaka A, Ruedigger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis CAO from Arabidopsis thaliana. Plant J 21:305–310. doi:10.1046/j.1365-313x.2000.00672.x

    Article  PubMed  CAS  Google Scholar 

  • Papenbrock J, Grimm B (2001) Regulatory network of tetrapyrrole biosynthesis—studies of intracellular signaling involved in metabolic and developmental control of plastids. Planta 213:667–681. doi:10.1007/s004250100593

    Article  PubMed  CAS  Google Scholar 

  • Papenbrock J, Mock HP, Tanaka R, Kruse E, Grimm B (2000) Role of magnesium chelatase activity in the early steps of the tetrapyrrole biosynthetic pathway. Plant Physiol 122:1161–1170. doi:10.1104/pp.122.4.1161

    Article  PubMed  CAS  Google Scholar 

  • Parry AD, Horgan R (1992) Abscisic acid biosynthesis in roots. Planta 187:185–191. doi:10.1007/BF00201936

    Article  CAS  Google Scholar 

  • Pesaresi P, Masiero S, Eubel H, Braun HP, Bhushan S, Glaser E, Salamini F, Leister D (2006) Nuclear photosynthetic gene expression is sinergically modulated by rate of protein synthesis in chloroplast and mitochondria. Plant Cell 18:970–991. doi:10.1105/tpc.105.039073

    Article  PubMed  CAS  Google Scholar 

  • Pollmann S, Spinger A, Buhr F, Lahroussi A, Samol I, Bonneville JM, Tichtinsky G, von Wettstein D, Reinbothe C, Reinbothe S (2007) A plant porphyria related to defects in plastid import of protochlorophyllide oxidoreductase A. Proc Natl Acad Sci USA 104:2019–2023. doi:10.1073/pnas.0610934104

    Article  PubMed  CAS  Google Scholar 

  • Qin X, Zeevart JAD (1999) The 9-cic-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water stressed bean. Proc Natl Acad Sci USA 96:15354–15361. doi:10.1073/pnas.96.26.15354

    Article  PubMed  CAS  Google Scholar 

  • Rassadina V, Domanskii V, Averina NG, Schoch S, Rüdiger W (2004) Correlation between chlorophyllide esterification, shibata shift and regeneration of photochlorophyllide650 in flash-irradiated etiolated barley leaves. Physiol Plant 121:556–567. doi:10.1111/j.1399-3054.2004.00362.x

    Article  CAS  Google Scholar 

  • Reiner A, Yekutieli D, Benjamini Y (2003) Identifying differentially expressed genes using false discovery rate controlling procedure. Bioinformatics 19:368–375. doi:10.1093/bioinformatics/btf877

    Article  PubMed  CAS  Google Scholar 

  • Richly E, Dietzmann A, Biehl A, Kurth J, Laloi C, Apel K, Salamini F, Leister D (2003) Covariations in the nuclear chloroplast transcriptome reveal a regulatory master-switch. EMBO Rep 4:491–498. doi:10.1038/sj.embor.embor828

    Article  PubMed  CAS  Google Scholar 

  • Rock CD, Zeevaart JA (1991) The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc Natl Acad Sci USA 88:7496–7499. doi:10.1073/pnas.88.17.7496

    Article  PubMed  CAS  Google Scholar 

  • Runge S, van Cleve B, Lebedev N, Armostrong G, Apel K (1995) Isolation and classification of chlorophyll-deficient xantha mutants of Arabidopsis thaliana. Planta 197:490–500. doi:10.1007/BF00196671

    Article  PubMed  CAS  Google Scholar 

  • Rzeznicka K, Walker CJ, Westergren T, Kannangara CG, von Wettstein D, Merchant S, Gough SP, Hansson M (2005) Xantha-l encodes a membrane subunit of the aerobic Mg-protoporphyrin IX monomethyl ester cyclase involved in chlorophyll biosynthesis. Proc Natl Acad Sci USA 102:5886–5891. doi:10.1073/pnas.0501784102

    Article  PubMed  CAS  Google Scholar 

  • Saijo Y, Sulivan JA, Wang H, Yang J, Shen Y, Rubio V, Ma L, Hoecker U, Deng XW (2003) The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev 17:2642–2647. doi:10.1101/gad.1122903

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Williams-Carrier RE, Williams-Voelker PM, Kroeger TS, Vichas A, Barkan A (2006) A pentatricopeptide repeat protein facilitates the trans-splicing of the maize chloroplast rps12 pre-mRNA. Plant Cell 18:2650–2663. doi:10.1105/tpc.106.046110

    Article  PubMed  CAS  Google Scholar 

  • Schultes NP, Sawers RJH, Brutnell TP, Krueger RW (2000) Maize high chlorophyll fluorescent 60 mutation is caused by an Ac disruption of the gene encoding the chloroplast ribosomal small subunit protein 17. Plant J 21:317–327. doi:10.1046/j.1365-313x.2000.00676.x

    Article  PubMed  CAS  Google Scholar 

  • Settles AM, Yonetani A, Baron A, Bush DR, Cline K, Martienssen R (1997) Sec-independent protein translocation by the maize Hcf106 protein. Science 278:1467–1470. doi:10.1126/science.278.5342.1467

    Article  PubMed  CAS  Google Scholar 

  • Stern DB, Hanson MR, Barkan A (2004) Genetics and genomics of chloroplast biogenesis: maize as a model system. Trends Plant Sci 9:293–301. doi:10.1016/j.tplants.2004.04.001

    Article  PubMed  CAS  Google Scholar 

  • Strand A, Asami T, Alonso J, Ecker JR, Chory J (2003) Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrin IX. Nature 421:79–83. doi:10.1038/nature01204

    Article  PubMed  CAS  Google Scholar 

  • Sundberg E, Slagter JG, Fridborg I, Cleary SP, Robinson C, Coupland G (1997) ALBINO3, an Arabidopsis nuclear gene essential for chloroplast differentiation, encodes a chloroplast protein that shows homology to proteins present in bacterial membranes and yeast mitochondria. Plant Cell 9:717–730

    Article  PubMed  CAS  Google Scholar 

  • Susek RE, Ausubel FM, Chory J (1993) Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell 74:787–799. doi:10.1016/0092-8674(93)90459-4

    Article  PubMed  CAS  Google Scholar 

  • Svensson JT, Crosatti C, Campoli C, Bassi R, Stanca AM, Close TJ, Cattivelli L (2006) Transcriptome analysis of cold acclimationin barley albina and xantha mutants. Plant Physiol 141:257–270. doi:10.1104/pp.105.072645

    Article  PubMed  CAS  Google Scholar 

  • Tanaka R, Yoshida K, Nakayashiki T, Tsuji H, Inokuchi H, Okada K, Tanaka A (1997) The third member of the hemA gene family encoding glutamyl-tRNA reductase is primarily expressed in roots in Hordeum vulgare. Photosynth Res 53:161–171. doi:10.1023/A:1005809800959

    Article  CAS  Google Scholar 

  • Thimm O, Blaesing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939. doi:10.1111/j.1365-313X.2004.02016.x

    Article  PubMed  CAS  Google Scholar 

  • Varotto C, Pesaresi P, Meurer J, Oelműller R, Steiner-Lange S, Salamini F, Leister D (2000) Disruption of the Arabidopsis photosystem I gene psaE1 affects photosynthesis and impairs growth. Plant J 22:115–124. doi:10.1046/j.1365-313x.2000.00717.x

    Article  PubMed  CAS  Google Scholar 

  • Vasileuskaya Z, Oster U, Beck CF (2005) Mg-protoporphyrin IX and heme control HEMA, the gene encoding the first specific step of tetrapyrrole biosynthesis, in Chlamidomonas reinhardtii. Eucar Cell 4:1620–1628

    Article  CAS  Google Scholar 

  • Walker MB, Roy LM, Coleman E, Voelker R, Barkan A (1999) The Maize tha4 gene functions in sec-independent protein transport in chloroplast and is related to hcf106, tatA, and tatB. J Cell Biol 147:267–275. doi:10.1083/jcb.147.2.267

    Article  PubMed  CAS  Google Scholar 

  • Wettstein DV, Kahn A, Nielsen OF, Gough S (1974) Genetic regulation of chlorophyll synthesis analyzed with mutants in barley. Science 184:800–802. doi:10.1126/science.184.4138.800

    Article  PubMed  Google Scholar 

  • Wu D, Wright DA, Wetzel C, Voytas DF, Rodermel S (1999) The IMMUTANS variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis. Plant Cell 11:43–55

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto HY, Bassi R (2006) Carotenoids: localization and function. In: Ort DR, Yocum CF (eds) Oxygenic photosynthesis: the light reactions. Springer, Netherlands, pp 539–563

    Google Scholar 

  • Yaronskaya E, Ziemann V, Walter G, Averina N, Bőrner T, Grimm B (2003) Metabolic control of the tetrapyrrole biosynthetic pathway for porphyrin distribution in the barley mutant albostrians. Plant J 35:512–522. doi:10.1046/j.1365-313X.2003.01825.x

    Article  PubMed  CAS  Google Scholar 

  • Zakhrabekova S, Kannangara CG, von Wettstein D, Hansson M (2002) A microarray approach for identifying mutated genes. Plant Physiol Biochem 40:189–197. doi:10.1016/S0981-9428(02)01363-3

    Article  CAS  Google Scholar 

  • Zakhrabekova S, Gough SP, Lundqvist U, Hansson M (2007) Comparing two microarray platforms for identifying mutated genes in barley (Hordeum vulgare L.). Plant Physiol Biochem 45:617–622. doi:10.1016/j.plaphy.2007.05.004

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the FIRB programs No. RBAU01E3CX and No. RBIP06CTBR (Parallelomics). We thank Prof. Timothy J. Close (University of California, Riverside, CA) for his help in array analysis, Prof. Diter von Wettstein (Washington State University, Pullman, WA) and Dr. David Simpson (Carlsberg Laboratory, Copenhagen) for the kind gift of barley mutants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Crosatti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLS 2064 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campoli, C., Caffarri, S., Svensson, J.T. et al. Parallel pigment and transcriptomic analysis of four barley Albina and Xantha mutants reveals the complex network of the chloroplast-dependent metabolism. Plant Mol Biol 71, 173–191 (2009). https://doi.org/10.1007/s11103-009-9516-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9516-8

Keywords

Navigation