Skip to main content

Advertisement

Log in

Dose-dependent RNAi-mediated geminivirus resistance in the tropical root crop cassava

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Cassava mosaic disease is a major constraint for cassava production in Africa, resulting in significant economic losses. We have engineered transgenic cassava with resistance to African cassava mosaic virus (ACMV), by expressing ACMV AC1-homologous hairpin double-strand RNAs. Transgenic cassava lines with high levels of AC1-homologous small RNAs have ACMV immunity with increasing viral load and different inoculation methods. We report a correlation between the expression of the AC1-homologous small RNAs and the ACMV resistance of the transgenic cassava lines. Characterization of the small RNAs revealed that only some of the hairpin-derived small RNAs fall into currently known small interfering RNA classes in plants. The method is scalable to stacking by targeting multiple virus isolates with additional hairpins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akbergenov R, Si-Ammour A, Blevins T, Amin I, Kutter C, Vanderschuren H, Zhang P, Gruissem W, Meins F Jr, Hohn T, Pooggin MM (2006) Molecular characterization of geminivirus-derived small RNAs in different plant species. Nucleic Acids Res 34(2):462–471. doi:10.1093/nar/gkj447

    Article  PubMed  CAS  Google Scholar 

  • Belostotsky DA, Rose AB (2005) Plant gene expression in the age of systems biology: integrating transcriptional and post-transcriptional events. Trends Plant Sci 10(7):347–353. doi:10.1016/j.tplants.2005.05.004

    Article  PubMed  CAS  Google Scholar 

  • Blevins T, Rajeswaran R, Shivaprasad PV, Beknazariants D, Si-Ammour A, Park HS, Vazquez F, Robertson D, Meins F Jr, Hohn T, Pooggin MM (2006) Four plant dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res 34(21):6233–6246. doi:10.1093/nar/gkl886

    Article  PubMed  CAS  Google Scholar 

  • Bonfim K, Faria JC, Nogueira EOPL, Mendes EA, Aragao FJL (2007) RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant Microbe Interact 20(6):717–726. doi:10.1094/MPMI-20-6-0717

    Article  PubMed  CAS  Google Scholar 

  • Boulton MI (2003) Geminiviruses: major threats to world agriculture. Ann Appl Biol 142(2):143. doi:10.1111/j.1744-7348.2003.tb00239.x

    Article  Google Scholar 

  • Chellappan P, Masona MV, Vanitharani R, Taylor NJ, Fauquet CM (2004) Broad spectrum resistance to ssDNA viruses associated with transgene-induced gene silencing in cassava. Plant Mol Biol 56(4):601–611. doi:10.1007/s11103-004-0147-9

    Article  PubMed  CAS  Google Scholar 

  • Fauquet C, Fargette D (1990) African cassava mosaic-virus—etiology, epidemiology, and control. Plant Dis 74(6):404–411. doi:10.1094/PD-74-0404

    Article  Google Scholar 

  • Frischmuth T, Stanley J (1998) Recombination between viral DNA and the transgenic coat protein gene of African cassava mosaic geminivirus. J Gen Virol 79:1265–1271

    PubMed  CAS  Google Scholar 

  • Fuentes A, Ramos PL, Fiallo E, Callard D, Sanchez Y, Peral R, Rodriguez R, Pujol M (2006) Intron-hairpin RNA derived from replication associated protein C1 gene confers immunity to Tomato Yellow Leaf Curl Virus infection in transgenic tomato plants. Transgenic Res 15(3):291–304. doi:10.1007/s11248-005-5238-0

    Article  PubMed  CAS  Google Scholar 

  • Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D (2000) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Biochem Mol Biol 35(2):105–140

    PubMed  CAS  Google Scholar 

  • Hily J-M, Scorza R, Webb K, Ravelonandro M (2005) Accumulation of the long class of siRNAs is associated with resistance to plum pox virus in a transgenic woody perennial plum tree. Mol Plant Microbe Interact 18(8):794–799. doi:10.1094/MPMI-18-0794

    Article  PubMed  CAS  Google Scholar 

  • Hong Y, Stanley J (1996) Virus resistance in Nicotiana benthamiana conferred by African cassava mosaic virus replication-associated protein (AC1) transgene. Mol Plant Microbe Interact 9(4):219–225

    CAS  Google Scholar 

  • Kalantidis K, Psaradakis S, Tabler M, Tsagris M (2002) The occurrence of CMV-specific short RNAs in transgenic tobacco expressing virus-derived double-stranded RNA is indicative of resistance to the virus. Mol Plant Microbe Interact 15(8):826–833. doi:10.1094/MPMI.2002.15.8.826

    Article  PubMed  CAS  Google Scholar 

  • Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H (2007) A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev 21(23):3123–3134. doi:10.1101/gad.1595107

    Article  PubMed  CAS  Google Scholar 

  • Kunik T, Salomon R, Zamir D, Navot N, Zeidan M, Michelson I, Gafni Y, Czosnek H (1994) Transgenic tomato plants expressing the tomato yellow leaf curl virus capsid protein are resistant to the virus. Biotechnology (NY) 12(5):500–504. doi:10.1038/nbt0594-500

    Article  CAS  Google Scholar 

  • Lee SR, Collins K (2006) Two classes of endogenous small RNAs in Tetrahymena thermophila. Genes Dev 20(1):28–33. doi:10.1101/gad.1377006

    Article  PubMed  CAS  Google Scholar 

  • Legg JP, Fauquet CM (2004) Cassava mosaic geminiviruses in Africa. Plant Mol Biol 56(4):585–599. doi:10.1007/s11103-004-1651-7

    Article  PubMed  CAS  Google Scholar 

  • Legg JP, Owor B, Sseruwagi P, Ndunguru J (2006) Cassava mosaic virus disease in East and central Africa: epidemiology and management of a regional pandemic. Adv Virus Res 67:355–418. doi:10.1016/S0065-3527(06)67010-3

    Article  PubMed  CAS  Google Scholar 

  • Mansoor S, Zafar Y, Briddon RW (2006) Geminivirus disease complexes: the threat is spreading. Trends Plant Sci 11(5):209–212. doi:10.1016/j.tplants.2006.03.003

    Article  PubMed  CAS  Google Scholar 

  • Noris E, Accotto GP, Tavazza R, Brunetti A, Crespi S, Tavazza M (1996) Resistance to tomato yellow leaf curl geminivirus in Nicotiana benthamiana plants transformed with a truncated viral C1 gene. Virology 224(1):130–138. doi:10.1006/viro.1996.0514

    Article  PubMed  CAS  Google Scholar 

  • Pooggin M, Shivaprasad PV, Veluthambi K, Hohn T (2003) RNAi targeting of DNA virus in plants. Nat Biotechnol 21(2):131–132. doi:10.1038/nbt0203-131b

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro SG, Lohuis H, Goldbach R, Prins M (2007) Tomato chlorotic mottle virus is a target of RNA silencing but the presence of specific short interfering RNAs does not guarantee resistance in transgenic plants. J Virol 81(4):1563–1573. doi:10.1128/JVI.01238-06

    Article  PubMed  CAS  Google Scholar 

  • Rose AB (2004) The effect of intron location on intron-mediated enhancement of gene expression in Arabidopsis. Plant J 40(5):744–751. doi:10.1111/j.1365-313X.2004.02247.x

    Article  PubMed  CAS  Google Scholar 

  • Shepherd DN, Mangwende T, Martin DP, Bezuidenhout M, Kloppers FJ, Carolissen CH, Monjane AL, Rybicki EP, Thomson JA (2007) Maize streak virus-resistant transgenic maize: a first for Africa. Plant Biotechnol J 5(6):759–767. doi:10.1111/j.1467-7652.2007.00279.x

    Article  PubMed  CAS  Google Scholar 

  • Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Gene expression—total silencing by intron-spliced hairpin RNAs. Nature 407(6802):319–320. doi:10.1038/35030305

    Article  PubMed  CAS  Google Scholar 

  • Soni R, Murray JA (1994) Isolation of intact DNA and RNA from plant tissues. Anal Biochem 218(2):474–476. doi:10.1006/abio.1994.1214

    Article  PubMed  CAS  Google Scholar 

  • Swiezewski S, Crevillen P, Liu F, Ecker JR, Jerzmanowski A, Dean C (2007) Small RNA-mediated chromatin silencing directed to the 3′ region of the Arabidopsis gene encoding the developmental regulator, FLC. Proc Natl Acad Sci USA 104(9):3633–3638. doi:10.1073/pnas.0611459104

    Article  PubMed  CAS  Google Scholar 

  • Vanderschuren H, Stupak M, Futterer J, Gruissem W, Zhang P (2007a) Engineering resistance to geminiviruses—review and perspectives. Plant Biotechnol J 5(2):207–220. doi:10.1111/j.1467-7652.2006.00217.x

    Article  PubMed  CAS  Google Scholar 

  • Vanderschuren H, Akbergenov R, Pooggin MM, Hohn T, Gruissem W, Zhang P (2007b) Transgenic cassava resistance to African cassava mosaic virus is enhanced by viral DNA-A bidirectional promoter-derived siRNAs. Plant Mol Biol 64(5):549–557. doi:10.1007/s11103-007-9175-6

    Article  PubMed  CAS  Google Scholar 

  • Vanitharani R, Chellappan P, Fauquet CM (2003) Short interfering RNA-mediated interference of gene expression and viral DNA accumulation in cultured plant cells. Proc Natl Acad Sci USA 100(16):9632–9636. doi:10.1073/pnas.1733874100

    Article  PubMed  CAS  Google Scholar 

  • Wang M-B, Abbott DC, Waterhouse PM (2000) A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol Plant Pathol 1:347–356. doi:10.1046/j.1364-3703.2000.00038.x

    Article  CAS  Google Scholar 

  • Wang MB, Helliwell CA, Wu LM, Waterhouse PM, Peacock WJ, Dennis ES (2008) Hairpin RNAs derived from RNA polymerase II and polymerase III promoter-directed transgenes are processed differently in plants. RNA 14(5):1–11

    Google Scholar 

  • Waterhouse PM, Fusaro AF (2006) Viruses face a double defense by plant small RNAs. Science 313(5783):54–55. doi:10.1126/science.1130818

    Article  PubMed  CAS  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27(6):581–590. doi:10.1046/j.1365-313X.2001.01105.x

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Potrykus I, Puonti-Kaerlas J (2000) Efficient production of transgenic cassava using negative and positive selection. Transgenic Res 9:405–415. doi:10.1023/A:1026509017142

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Vanderschuren H, Futterer J, Gruissem W (2005) Resistance to cassava mosaic disease in transgenic cassava expressing antisense RNAs targeting virus replication genes. Plant Biotechnol J 3(4):385–397. doi:10.1111/j.1467-7652.2005.00132.x

    Article  PubMed  Google Scholar 

  • Zrachya A, Kumar PP, Ramakrishnan U, Levy Y, Loyter A, Arazi T, Lapidot M, Gafni Y (2007) Production of siRNA targeted against TYLCV coat protein transcripts leads to silencing of its expression and resistance to the virus. Transgenic Res 16(3):385–398. doi:10.1007/s11248-006-9042-2

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. John Stanley (John Innes Centre) for the ACMV clones, and Drs. Johannes Fütterer (ETH Zurich), Daniel Schöner (ETH Zurich) and Thomas Hohn (University of Basel) for helpful discussions. This work was supported by grants from the Eiselen-Foundation-Ulm and the Bill & Melinda Gates Foundation Grand Challenges in Global Health Initiative.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hervé Vanderschuren or Wilhelm Gruissem.

Electronic supplementary material

Below are the links to the electronic supplementary material.

Table S1

Sequences and functions of primers and oligonucleotides used in the experiments. (DOC 131 kb)

Fig. S1

Supplementary material 2 (TIFF 3175 kb)

Fig. S2

Supplementary material 3 (TIFF 3175 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanderschuren, H., Alder, A., Zhang, P. et al. Dose-dependent RNAi-mediated geminivirus resistance in the tropical root crop cassava. Plant Mol Biol 70, 265–272 (2009). https://doi.org/10.1007/s11103-009-9472-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9472-3

Keywords

Navigation